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Chapter 1

Introduction

HIV/AIDS is a global infectious disease. As of 2016, approximately 36.7 million people have

HIV worldwide with the number of new infections that year being about 1.8 million [52]. This

is down from 3.1 million new infections in 2001 [19]. Slightly over half the infected population

are women and 2.1 million are children. It resulted in about 1 million deaths in 2016, down

from a peak of 1.9 million in 2005 [52]. In 2008 in the United States approximately 1.2 million

people were living with HIV, resulting in about 17,500 deaths. The US Centers for Disease

Control and Prevention estimated that in 2008 20% of infected Americans were unaware of

their infection. As of 2016 about 675,000 people have died of HIV/AIDS in the USA since the

beginning of the HIV epidemic. In the United Kingdom as of 2015 there were approximately

101,200 cases which resulted in 594 deaths. South & South East Asia is the second most

affected; in 2010 this region contained an estimated 4 million cases or 12% of all people living

with HIV resulting in approximately 250,000 deaths. Approximately 2.4 million of these cases

are in India [52]. Sub-Saharan Africa is the region most affected. In 2010, an estimated 68%

(22.9 million) of all HIV cases and 66% of all deaths (1.2 million) occurred in this region. This

means that about 5% of the adult population is infected and it is believed to be the cause

of 10% of all deaths in children. Here in contrast to other regions women compose nearly

60% of cases. South Africa has the largest population of people with HIV of any country

in the world at 5.9 million. Life expectancy has fallen in the worst-affected countries due to

HIV/AIDS; for example, in 2006 it was estimated that it had dropped from 65 to 35 years

in Botswana. Mother-to-child transmission, as of 2013, in Botswana and South Africa has

decreased to less than 5% with improvement in many other African nations due to improved

access to antiretroviral therapy [52]. Accurate data on the number of Ethiopians who have
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died of HIV/AIDS in the last three decades are hard to know, but according to an estimate

by the Federal HIV/AIDS Prevention and Control Office (FHAPCO), there were on average

19,743 deaths every year, which left behind about 247,250 children orphaned [42]. Following

its official discovery in 1984, HIV/AIDS has seen a rapid spread all over Ethiopia, putting the

lives of millions at risk directly or indirectly. Owing to lack of awareness, similar trend is seen

in many countries in Africa and Asia. Like many of these countries, Ethiopia’s fight against

HIV/AIDS is one of the few highly paid for projects by western donors, which includes the

over US$2 billion contribution by the U.S. government through its program called ‘President’s

Emergency Plan for AIDS Relief (PEPFAR), making it the ever largest donation coming to the

country for HIV/AIDS purpose. Owing to similar coordinated efforts, the spread of the virus

has seen a decline over the last two decades especially in urban areas. As data from FHAPCO

indicates that there are over 718,550 people living with HIV in Ethiopia alone, a little over

1.18% of the population [42]. The 2016 Ethiopian Demographic Health Survey (DHS) reveals

that around 56% of the women and 55% of the men among the surveyed household have never

been tested for HIV, an indication the current number of HIV positives in the country could be

a lot more had all the population been tested. And, despite the existence of the large number

of people living with HIV/AIDS, only 72% of them are thought to be aware that they are living

with the virus; the remaining 28% think they are not infected. When measuring the prevalence

of HIV women tend to be more vulnerable than men. Of all the HIV positives in Ethiopia,

39% are men while women account for the remaining 61%, of which 25% of are commercial sex

workers [42]. According to the FHAPCO, 27,288 people were known to have been infected by

HIV during the 2009 Ethiopian calendar; 16,021 (59%) were women whereas 11,267 (41%) were

men. Among the three million pregnant women who are receiving medical follow up currently,

around 27,000 of them are HIV positives [42]. Gender-based violence (GBV) is another major

factor contributing to increase numbers among women at risk of contracting HIV. The 2016

Ethiopian DHS report shows that among all the gender based violence in 2016, 7% of them

were sexual, and one in 10 women among the surveyed experienced sexual violence. The report

also mentions divorced, separated and widowed women as the most affected by sexual violence,

compared to married women [42]. HIV/AIDS has become a chronic rather than an acutely

fatal disease in many areas of the world [62].
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1.1 Research Problem

One STD that many people are worried about getting is HIV/AIDS which is nowadays con-

sidered as the greatest public health disaster of modern time. Its progression has challenged

the global population for decades. Through mathematical modeling, researchers have studied

different interventions on the HIV pandemic, such as treatment, education, condom use, and

those focuses on different compartmental models with emphasis on the effect of public health

education. As a motivation for this research, it is important not to let our arms down in

our efforts to prevent and control the HIV/AIDS epidemics in our countries. If mathematical

models based on the different mode of transmission mechanism of HIV/AIDS might help the

medical and scientific community to understand better how the disease spreads in the commu-

nity then we have to support it. Even though the actual data needed for the models might not

be accurate or even available, such modeling is still vital in investigating how changes in the

various assumptions and parameter values affect the course of the epidemic. So we would like to

analyze a deterministic mathematical model analysis on the spread and control of HIV/AIDS

under different modes of transmissions and inflow of immigrants. In this thesis we responded

the following research questions.

• What is the most influential parameter that helps the spread of HIV/AIDS in the com-

munity?

• What is the most influential parameter that helps us to control the spread of HIV infection

based on the real data taken from Ethiopia?

1.2 Objectives of the study

1.2.1 Main Objective of the Study

In this thesis the main objective is analyzing a Mathematical model on different modes of

transmission of HIV infection, age structure and inflow immigrants in Ethiopia.
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1.2.2 Specific Objectives of the Study

The specific aims of this study are as follows:

• To identify the model assumptions on the dynamics of HIV infection.

• To construct flow charts based on the assumptions.

• To develop a dynamical system of HIV/AIDS infection.

• To determine equilibrium points for the dynamical system.

• To analyze stability of equilibrium points.

• To identify the basic reproduction number.

• To determine the control parameters on the spread and control of HIV/AIDS infection.

• To identify the most sensitive parameters.

1.3 Significance of the study

The goal of HIV infection control programme is to decrease morbidity and mortality due to

this disease and prepare planning to control transmission of HIV infection in the community.

Understanding the dynamic of HIV/AIDS is a key to the control of the epidemic. The study

will give insight into dynamics of HIV which is crucial in the control of the disease. Further,

the findings of this study will be of great benefit to the public health sector, the community

and NGOs. It will be also helpful in policy formulation, planning, budgeting, resource alloca-

tion and making appropriate decisions in control and prevention of the diseases and able to

prescribe proper interventions. The study will also add to the existing body of knowledge on

mathematical application in the field of epidemiology.

This thesis is organized as follows:

First, in Chapter two, we presented the literature review and related materials.

Next, in Chapter three, we explain and discuss about the methodology we used in the study.

In Chapter four, the focus is developing a mathematical model for treatment and inflow infec-

tive immigrants on the Dynamics of HIV/AIDS and analyzed analytically. Here finding the

reproduction number and stability analysis of equilibrium points are discussed.

In Chapters five, we investigate a mathematical model analysis on Dynamics of HIV/AIDS

with age structure and inflow immigrants in Ethiopia. The focus of these chapter is finding the

reproduction number and stability analysis of equilibrium points.

In Chapter six, we investigate numerical simulation and sensitivity analysis of a mathematical

4



model developed and discussed under Chapter four. Here we also identify the most sensitive

parameters.

In Chapter seven, we investigate numerical simulation, parameter estimation and sensitivity

analysis of a mathematical model developed and discussed under chapter five. Here we also

identify the most sensitive parameters using data taken from Ethiopia.

Finally, we conclude and recommend the thesis in Chapter 8.
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Chapter 2

Literature Review

2.1 Origin of HIV

Both HIV-1 and HIV-2 are believed to have originated in non-human primates in West-central

Africa and were transferred to humans in the early 20th century [102]. HIV-1 appears to have

originated in southern Cameroon through the evolution of SIV (cpz),a simian immunodefi-

ciency virus (SIV) that infects wild chimpanzees (HIV-1 descends from the SIVcpz endemic in

the chimpanzee subspecies Pan troglodytes troglodytes) [37]. The closest relative of HIV-2 is

SIV(smm), a virus of the sooty mangabey, an Old World monkey living in coastal West Africa

(from southern Senegal to western Côte d’Ivoire) [96]. There is evidence that humans who par-

ticipate in bush meat activities, either as hunters or as bush meat vendors, commonly acquire

SIV [61]. However, SIV is a weak virus which is typically suppressed by the human immune

system within weeks of infection. It is thought that several transmissions of the virus from in-

dividual to individual in quick succession are necessary to allow it enough time to mutate into

HIV. Furthermore, due to its relatively low person-to-person transmission rate, SIV can only

spread throughout the population in the presence of one or more high-risk transmission chan-

nels, which are thought to have been absent in Africa before the 20th century. An alternative

view holds that unsafe medical practices in Africa after World War II, such as unsterile reuse of

single use syringes during mass vaccination, antibiotic and anti-malaria treatment campaigns,

were the initial vector that allowed the virus to adapt to humans and spread [18].
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2.2 Stages of HIV infection

There are four main stages of HIV infection.

The first stage of HIV infection is called primary infection. Primary infection begins shortly

after an individual first becomes infected with HIV. This stage lasts for a few weeks. Dur-

ing this period, individuals experience symptoms similar to the flu. Very few individuals seek

treatment during this time, and those who do are usually misdiagnosed with a viral infection.

Often, if an HIV test is performed, it will come back negative, since antibodies are not yet

being produced by the individual’s immune system [53]. Since antibodies have not yet devel-

oped, HIV continues to replicate and results in very high levels of the virus [4]. In the first few

weeks after being infected, infected individuals are highly infectious. At this stage there is a

large amount of HIV in the peripheral blood (the blood in the circulating system not in the

lymphatic system, bone marrow, liver or spleen), around 106 copies of virus per µl of blood.

Antibodies and cytotoxic lymphocytes start being produced as a response to the virus which is

known as seroconversion. At this stage about 20 percent of people who are HIV positive show

symptoms which are not mild. However, the diagnosis of HIV infection is missed at this stage.

Those who believe they have been exposed to HIV should repeat the test after six months.

In the second stage, individuals are free from any symptoms of HIV although there may be

swollen glands. Levels of HIV in the blood are very low, but are detectable. If an HIV test is

performed, it will show positive. While the individual is asymptomatic, the HIV in their blood

is reproducing constantly. This stage lasts about ten years, but can be much longer or shorter

depending on the individual and is characterized by a CD4+ count around 500 cells µl.

In the third stage, the immune system has become so damaged by HIV that symptoms begin

to appear. As a result, it leads to greater CD4+ cell destruction and the immune system is not

able to keep up with replacing the CD4+ cells that are lost. As the immune system fails, symp-

toms start to develop, Robertson [58]. Symptoms are typically mild at first, and then slowly

become more severe. Opportunistic infections, infections that take advantage of the immune

system’s vulnerable state, begin to occur. These infections affect almost all the systems of the

body and include both infections and cancers. Some common opportunistic infections include

tuberculosis, cytomegalo virus, and shingles. In this stage HIV infection is often characterized

by multi-system disease and infections in almost all body systems. Treatment for a specific

infection or cancer is often carried out, however the main cause is the action of HIV as it attacks

the immune system. Unless HIV itself can be reduced, immune suppression will continue to be
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weaker.

In the fourth and final stage, a person is diagnosed as having AIDS. The progression to AIDS

can be characterized by having a CD4+ count of 200 per ml or below, while the normal situation

is around 1000 per ml. At this stage, the infected individual is likely to develop opportunistic

infections in their respiratory system, gastro-intestinal system, central nervous system and on

the skin as well. Once a person is diagnosed with AIDS, the AIDS status is permanent [58].

A blood test can determine if a person is infected with HIV, but if a person tests positive for

HIV, it does not necessarily mean that the person has AIDS. A diagnosis of AIDS is made by

a physician according to the CDC AIDS Case Definition. A person infected with HIV may

receive an AIDS diagnosis after developing one of the CDC-defined AIDS indicator illnesses. A

person with HIV can also receive an AIDS diagnosis on the basis of certain blood tests (CD4+

counts) and may not have experienced any serious illnesses.

Prognosis varies between people, and both the CD4 count and viral load are useful for predicted

outcomes. Without treatment, average survival time after infection with HIV is estimated to

be 9 to 11 years, depending on the HIV subtype [52]. After the diagnosis of AIDS, if treatment

is not available, survival ranges lies between 6 and 19 months [73].

2.3 Epidemiology

One of the most important reasons that developed countries have become as productive as

they are today is that the population remains healthy and disease free. This essential task

is performed by each country’s health department and is carried out by individuals known as

epidemiologists. Without their efforts and their coordination with others in the medical field,

it would be very difficult if not impossible to obtain current information regarding important

diseases, methods of transmission, methods of control, and the like. Furthermore, information

on the incidence or prevalence of diseases and statistics on morbidity and mortality rates, all of

which are essential to physicians and other medical personnel to help control and understand

diseases, would not be available without the efforts of the epidemiologists [13].

Ronald Ross (May 13, 1857 September 16, 1932) was an English physician. Ross was a pioneer

in developing mathematical models for the study of epidemiology. Anderson Gray McKendrick

(September 8, 1876 - May 30, 1943) Scottish physician and epidemiologist was another pioneer

in the use of mathematical methods in epidemiology. McKendrick’s career as a mathematical

epidemiologist began in India. In 1914 he published a paper in which he gave equations for
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the pure birth process and a particular birth-death process. After his return to Scotland he

collaborated with W. O. Kermack on a notable series of papers. The first paper (1927) gave

the differential equations for a deterministic general epidemic [99]. It is important to mention

that modeling is very crucial in epidemiology since in most cases we cannot do experiments.

HIV is transmitted by three main routes: sexual contact, blood and blood products, and from

mother to child. There is no risk of acquiring HIV if exposed to nasal secretions, saliva, spu-

tum, sweat, tears, urine, or vomit unless these are contaminated with blood [63]. The most

frequent mode of transmission of HIV is through sexual contact with an infected individual.

Globally, the most common mode of HIV transmission is via sexual contacts between people

of the opposite sex; however, the pattern of transmission varies among countries. As of 2014,

most HIV transmission in the United States occurred among men who had sex with men [52].

The viral load of an infected person is an important risk factor in both sexual and mother-to-

child transmission [8]. During the first 2.5 months of an HIV infection a person’s infectiousness

is twelve times higher due to the high viral load associated with acute HIV [27]. If the person

is in the late stages of infection, rates of transmission are approximately eight fold greater [16].

The second most frequent mode of HIV transmission is via blood and blood products. Blood-

borne transmission can be through needle-sharing during intravenous drug use, needle stick

injury, transfusion of contaminated blood or blood product, or medical injections with unster-

ilized equipment.

Among blood & blood product transmissions, HIV is transmitted in about 93% of blood trans-

fusions using infected blood [52]. In developed countries the risk of acquiring HIV from a blood

transfusion is extremely low (less than one in half a million) where improved donor selection

and HIV screening is performed; for example, in the UK the risk is reported at one in five

million and in the United States it was one in 1.5 million in 2008. In low income countries,

only half of transfusions may be appropriately screened (as of 2008), and it is estimated that

up to 15% of HIV infections in these areas come from transfusion of infected blood and blood

products, representing between 5% and 10% of global infections. Although rare because of

screening, it is possible to acquire HIV from organ and tissue transplantation [52].

Unsafe medical injections play a significant role in HIV spread in sub-Saharan Africa. In 2007,

between 12% and 17% of infections in this region were attributed to medical syringe use. The

World Health Organization estimates the risk of transmission as a result of a medical injection

in Africa at 1.2%. Significant risks are also associated with invasive procedures, assisted deliv-

ery, and dental care in this area of the world [97].

HIV can be transmitted from mother to child during pregnancy, during delivery, or through
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breast milk, resulting in the baby also contracting HIV. This is the third most common way in

which HIV is transmitted globally. In the absence of treatment, the risk of transmission before

or during birth is around 20% and in those who also breastfeed 35% [4]. With appropriate

treatment the risk of mother-to-child infection can be reduced to about 1% [4]. Preventive

treatment involves the mother taking antiretroviral during pregnancy and delivery, an elective

caesarean section, avoiding breastfeeding, and administering antiretroviral drugs to the new-

born [58]. Antiretroviral when taken by either the mother or the infant decreases the risk of

transmission in those who do breastfeed.

If a woman is untreated, two years of breastfeeding results in an HIV/AIDS risk in her baby

of about 17%. Treatment decreases this risk to 1% to 2% per year. Due to the increased risk

of death without breastfeeding in many areas in the developing world, the World Health Orga-

nization recommends either the mother and baby being treated with antiretroviral medication

while breast feeding is continued or the provision of safe formula. Infection with HIV during

pregnancy is also associated with miscarriage [52].

Epidemiology is the scientific study of epidemics and epidemic diseases, especially the factors

that influence the incidence, distribution, and control of infectious diseases occurrence in human

populations. It is possible to mathematically model the progress of most infectious diseases to

discover the likely outcome of an epidemic or to help manage them by different control pro-

grams. In the early 20th century, mathematical methods were introduced into epidemiology

by Ronald Ross [98], Anderson, Gray, McKendrick [113] and others. In the study of a disease,

all of them had some quantitatively and qualitatively questions to answer: how many people

have it?, where are these people?, how many new cases develop?, and how to control the disease?

During the development of epidemiology modeling in the population, deterministic (compart-

mental) models played a central role. Several papers are done with the deterministic mathe-

matical model which has the central roles among those the deterministic model has been used

in, [14], [31], [33], [36], [42], [43], [65] and so on. Such models divide the population into ho-

mogeneous sub-populations. The models that are labeled by SI, SIS, SEIS, and SEIR are

mostly used where the sub-populations are Susceptible, Exposed, Infected and Recovered or

Removed.
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In [31], Nyabadza et al. looked at a model of HIV/AIDS that examine the diminution in infec-

tion by promoting a change in sexual behavior through public health information campaigns

and individuals with AIDS to abstain from sexual activities. They considered a sexually active

population N(t), at time t. In the absence of treatment and other post-exposure intervention,

an adult individual’s survival can be modelled using the four stage model of HIV disease pro-

gression, with the four stages corresponding to the WHO Clinical Staging System. Depending

on the infection stage, they subdivide the population into subclasses (compartments): suscep-

tible S(t), asymptomatic infective I1(t) (infectious individuals who do not show symptoms of

the disease), symptomatic infective I2(t) (HIV infected individuals who show symptoms of the

disease) and those with full blown AIDS A(t), who are assumed to be active in spreading the in-

fection. The mode of transmission is assumed to be via heterosexual contacts as this represents

the single major primary mode of HIV infection globally, especially in the worst affected regions

of the world. Our sexually active population is thus given by N(t) = S(t) + I1(t) + I2(t) +A(t).

Each susceptible individual is considered to be equally likely to be infected by an infectious

individual, i.e, the population mixes homogeneously. All parameters of the model are assumed

positive. The recruitment rate of susceptible individuals is given by µb where b is total pop-

ulation and µ is natural death rate. The transfer rate from the asymptomatic compartment

to the symptomatic compartment is σ. The removal rate of the symptomatic infective as they

develop AIDS is given by ρ. The disease-related death rate is given by δ. From assumptions

they developed flow diagram and the dynamical system. Through analysis they obtained the

reproduction number. The model can be used to quantify the role played by media campaigns

and how they can possibly reduce the prevalence of the disease.

The HIV/AIDS epidemic in resource limited communities has been studied by Bhunu et al.

in [17] they attempted to evaluate the impact that an increase in the fraction, through some

social means, of sexually inactive HIV positive individuals has on the HIV/AIDS epidemic in

sub-Saharan Africa. They developed a model of HIV/AIDS including separate classes of known

HIV status and sexual activity levels, which are affected by HIV/AIDS education programs.

The entire population is divided into the following sub-group compartments: the susceptible

(S); the people who are HIV positive and do not know their status (I1) ; the people who are

HIV positive and know their status and reduce their risky sexual behavior as result knowing

their status (I2); the people who are HIV positive and know their status and have increased

their risky sexual behaviour as a result of knowing their status (I3);HIV positive people who
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are sexually inactive (I4); AIDS patients (A). It is assumed that the sexually inactive HIV

positive individuals are no longer infectious. Their focus is mainly on testing and abstinence

or voluntary withdrawal from sexual activity as soon as the individual is aware of his status.

They also assume that all individual with the terminal form of AIDS are too sick to engage

in sex and therefore do not contribute to the HIV/AIDS disease transmission dynamics. The

total human population is given by N(t) = S(t) + I1(t) + I2(t) + I3(t) + I4(t) + A(t). They

note however that including the inactive classes I4 and A into the total population does not

alter the dynamics of the model. Individuals are recruited into the human population through

birth at a constant rate Λ. Susceptible (S) are infected with HIV following unprotected sexual

contact with an infected individual at a rate λ where λ(t) = βc(I1(t)+φ1I2(t)+φ2I3(t))
N(t) with β being

the probability of getting infected per sexual contact; c is the effective contact rate; φ1ε(0, 1)

models the effect of a positive behavioural change as a result of knowing one’s HIV positive

status while φ2 > 1 accounts for increase in risky behaviour as a result of knowing one’s HIV

positive status. After infection with HIV, susceptible individuals infected with HIV will move

into the class of HIV infected people not knowing their status (I1). Individuals in the class (I1)

will know their HIV status at a rate delta through testing and counseling. A proportion f of

HIV positive people knowing their status will move into the class I2 and the complementary

(1−f) will move into the class I3 , respectively. HIV positive individuals who know their status

will move into the sexually inactive class I4 at a rate θ. For simplicity, they assume the same θ

value in both I2 and I3 classes. HIV positive people in classes I1, I2, I3 and I4 progress to the

AIDS class (A) at a rate ρ. In all classes individuals experience natural death at a constant

rate µ which is proportional to the number in each class. Individuals in the AIDS class have

an additional disease-induced death rate ν. Using the above information they developed flow

diagram and the dynamical system. They obtained the reproduction and computed some rele-

vant sensitivity indices of the reproduction number which measures initial disease transmission

in order to quantify their impact on the disease dynamics. They also evaluated the impact of

the increased fraction of sexually inactive HIV positive individuals on the HIV epidemic. The

elasticity of R0 with respect to θ which measures the effect a change in θ has as a proportional

change in R0. It is therefore evident that the abstinence rate θ (voluntary withdrawal from

(risky) sexual behavior of HIV positive individuals) has a significant impact on the disease

transmission. The authors suggested in their research that effective counseling and testing will

be able to control the HIV/AIDS epidemic. They also suggested that giving free antiretroviral

drugs to HIV positive individuals who change their sexual behavior and have withdrawn from

sexual contacts may be an effective tool to control the epidemic.
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A simple deterministic HIV/AIDS model incorporating condom use, sexual partner acquisi-

tion, behavior change and treatment as HIV/AIDS control strategies has been formulated by

Nyabadza et al. in [33], the sexually active population at any time (t) is stratified into those

that are screened through HCT and those that are not. The population is divided into seven

compartments of those that are susceptible and not screened Sn(t), susceptible and screened

Ss(t), infected and unscreened In(t), infected and screened Is(t), under treatment IT (t), who

would have developed AIDS and not screened An(t), and those who would have developed AIDS

but having been screened As(t). Using their assumption they developed the flow diagram that

describe population movements between compartments and dynamical system. They calcu-

lated the sensitivity indices of R0, for each model parameter and obtained the most sensitive

parameter.

In [54], a population of size N(t) at time t with constant inflow of susceptible at a rate Q

is studied. The population size is divided into four subclasses, susceptible (S), infective (I)

also assumed to be infectious, both pre-AIDS patients (P ) and AIDS patients (A) are assumed

to be sexually inactive, and therefore non-infectious. The natural mortality rate is ν in all

classes and the disease induced death rate is α in the AIDS patients class. In addition, β is a

sexual contact rate, c is the number of partners per individual and µ is the rate of movement

of pre-AIDS class individuals into AIDS class. It is also assumed that the susceptible become

HIV infected via sexual contacts with infective which may also lead to the birth of infected

children. It is assumed that a fraction of new born children are infected at birth, and hence are

directly recruited into the infective class with a rate (1− ε)θ and others die effectively at birth

(0 ≤ ε ≤ 1). Not only vertical transmission is considered for direct recruitment of infected

persons within the population, but also infected immigrants are recruited directly into both

infective and pre-AIDS patients classes. Consequently, m(1− π)I is the recruitment rate of in-

fective immigrants into the population and mπI is the recruitment rate of pre-AIDS immigrants

into the population. It is also assumed that some of the infective move to join pre-AIDS class,

depending on the viral counts, with a rate σδ and others with serious infection directly join

the AIDS class with a rate (1 − σ)δ, where (0 ≤ σ ≤ 1). The interaction between susceptible

and infective is assumed to be of standard mass action type.Based on the above assumption

they developed flow chart and dynamical system.Then they computed reproduction number
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and analyzed their result.

HIV is one of the major life-threatening viruses that are spreading in the People’s Republic of

China. A susceptible exposed in the latent stage-infectious (SEI) model was established to

sketch the evolution of epidemic. They divided the total population at time t into three mutually

exclusive classes: susceptible individuals S(t) and undiagnosed individuals E(t) in the latent

period and infected individuals I(t) who have been diagnosed. Hence, N(t) = S(t)+E(t)+I(t).

Based on their assumption they developed flow diagram and ordinary differential equations for

transmission dynamics of HIV/AIDS. By constructing Lyapunov function, globally asymptot-

ical stabilities of the disease-free and endemic equilibria were given. Through the HIV/AIDS

data in China, all parameters involved in SEI model were analyzed and parts of them were

estimated [118].

In order to find out the effect of human (sexual) behavior change and immigration in spreading

the HIV/AIDS, a deterministic model of HIV/AIDS with infective immigration is formulated

[72]. They divided the sexually active population N(t) into six compartments, namely, sus-

ceptible individuals S(t), infected individuals who unaware of their HIV/AIDS infection I1(t),

infected individuals who aware of their HIV/AIDS infection I2(t), infected individuals who re-

ceive treatment T (t), full-blown AIDS group A(t) and removed class R(t) at any time t. The

model is formulated based on following assumptions.

• Since their purpose in this model is to see what effect the human behavior (including move-

ment, sexual habits) can play in the dynamics of HIV/AIDS disease, they avoid to consider

detailed clinical stages of HIV/AIDS infection, instead they classed the population in two

ways, uninfected and infected group. Uninfected group divided into two different compart-

ments according to their behavior towards safe sex. Infected individuals divided four different

compartments according to whether the infected individual aware of his/her HIV infection sta-

tus, whether the infected individual received treatment and whether the infected individual has

developed the last stage of the disease, the full blown AIDS.

• Susceptible individuals are assumed to get infected by sexual contact with both aware and

unaware infected individuals with different transmission rates. The assumption that aware

infected individuals also take part in the transmission process is based on the fact that some

aware infected individuals may practice low-efficiency safe sex measures (and a few of them
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may transmit the disease intentionally), and susceptible individuals may not be aware of the

infected situation of his/her partner, which make them more vulnerable to the disease. So the

new generated infected individuals by aware infective individuals are assumed to be not aware

of his/her infection at first and go to the unaware infected individuals class.

• The simplest conceptual framework based on homogeneous behavior gives us clear insights

into how community based chemotherapy can influence epidemiological pattern and transmis-

sion success. Here the mixing of susceptible with infective is considered to be homogeneous

and accordingly the incidence rate is assumed to be bilinear.

• All new born are susceptible, i.e., in our model vertical transmission do not account for.

• We assumed that individuals in the treatment class not only to receive the ART, but also to

be served with knowledge about the HIV/AIDS disease so that they were persuaded to avoid

unsafe sexual behaviors. Full-blown AIDS individuals are assumed too ill to sexually active,

so the susceptible do not get infected through sexual contacts with individuals from these two

groups.

• Inclusion of compartment R: It is true that an appreciable number of people are now chang-

ing their sexual habits sufficiently due to the awareness of the widespread nature of disease in

society, the monumental deaths resulting from the disease, increasing knowledge of the agony

and psychological trauma experienced by the infected individuals, and better enlightenment

due to intense HIV/AIDS educational campaigns. Based on the above assumption they de-

veloped flow diagram and dynamical system.They obtained basic reproduction number. The

geometrical approach is used to obtain the global asymptotic stability of endemic equilibrium.

Their numerical findings were illustrated through simulations using MATLAB, which shows

reliability of their model from the practical point of view.

The work done by [104], the mathematical modeling of the spread of HIV / AIDS disease

among the population requires the whole human population to be divided in to four classes.

The whole of the human population at any time t is a variable and is denoted by N(t). The

four classes are as follows: (i) susceptible class the population size of this class at any time t

is denoted by S(t). The susceptible human has not yet infected by the disease but likely to

get infected in future. (ii) Unaware infective class the population size of this class at any time

t is denoted by I1(t). The unaware infective humans have already infected by the disease but

they do not know that they were already infected. (iii) Aware infective class the population

size of this class at any time t is denoted by I2(t). The aware infective humans have already
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infected by the disease and they know that they were already infected and (iv) AIDS class the

population size of this class at any time t is denoted by A(t). The AIDS class people are already

AIDS patients. They assumed that the people are recruited into susceptible class at a constant

rate of Q0. This recruitment into the susceptible class is due to natural births. The people of

susceptible class are likely to become infected through sexual contact with the people of I1(t)

and I2(t) classes. Thus, people from S(t) will go to I1(t) with a rate of[(β1I1 + β2I2)( S
N

)]. Here

the parameters β1 and β2 are the probabilities per one contact with which the disease trans-

mits to susceptible people by unaware and aware infective humans respectively. In this model

they considered β1 > β2. That is, the probability of transferring the disease to susceptible

population by unaware infected person is more than by aware infected person. People of S(t)

after getting infected will initially go to I1(t) but not to I2(t). This is because, all the infected

people are assumed to be initially unaware of the infection. Then based on their assumption

they developed flow diagram and a system of nonlinear ordinary differential equations. By

analyzing the system they obtained the reproduction number R0.

In [10], they considered four compartments of the relevant population: the susceptible popula-

tion, S(t), the undiagnosed HIV-infected population, X(t), the diagnosed HIV-infected popu-

lation, Y (t), and people diagnosed with AIDS, Z(t). They assumed that the population can be

partitioned into homogeneous sub population or compartments such that all individuals in a

given compartment have the same intrinsic epidemiological properties. Their model reflected,

members of the susceptible population are transmitted to the undiagnosed HIV-infected popu-

lation by a rate of α, decreased by natural death rate µ, move to the diagnosed with AIDS class

at a rate of β and increased by constant recruitment rate of λ. Members of the undiagnosed

HIV-infected population infected by sexual transmission move to the diagnosed class in two

ways: one is through contact tracing a rate of α and the other is through a linear term that

represents random or voluntary testing a rate of k̂ and decreased by natural death rate µ and

move to the diagnosed with AIDS class at a rate of β. The diagnosed with AIDS class decreased

by mortality rate of the population with AIDS µ̂. In addition, they assumed that transmission

via the diagnosed HIV-infected population and the AIDS population are negligible because of

Cuba’s extraordinarily successful health care system. In regard to the transmission dynamics

in Cuba, 99% of the infections are through sexual intercourse and so, they neglected infection

by nonsexual transmission. From the given assumption they presented schematic diagram and

dynamical system. Finally they analyzed the system and put their results.
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The transmission of Human Immunodeficiency Virus (HIV) that causes the Acquired Immuno

Deficiency Syndrome (AIDS) is strongly associated with unprotected sex and at the present

understanding this epidemic can reach higher prevalence threshold level when there are ex-

tensive sexual contacts between the sex workers and general population. In [80], the authors

investigated a nonlinear model for studying the transmission dynamics of HIV/AIDS epidemic

with emphasis on the role of female sex workers. Here, they considered only the heterosex-

ual transmissions of HIV/AIDS and formulate the mathematical model by dividing the total

adult population under consideration into three different classes: male, female and female sex

workers. They assumed different rates of recruitment for different classes of the population.

The equilibria of the model and their stability are discussed in detail. The basic reproduction

number R0 of the model is computed and it is shown that the disease-free equilibrium is stable

only when R0 < 1. When the associated reproduction number R0 > 1, the endemic equilibrium

is globally stable. Finally, the numerical simulations are reported to support the presented

analytical results.

In reference [70], they developed the following assumptions: Susceptible children increased by

rate of birth b1, decreased by mortality rate g and decreased by the proportion of babies born

with HIV from HIV infected mothers by the rate b1ν and the proportion of uninfected chil-

dren who survive the developmental stage of 0 up to a by the rate e−(ga)b1. Infected children

increased by the proportion of babies born with HIV from HIV infected mothers by the rate

b1ν, decreased by natural child mortality rate g and infected children progress to AIDS by

the rate m. The AIDS Cases of children increased by the rate m from infected children and

decreased by natural child mortality rate g and disease related death rate d. The susceptible

adults increased by the rate e−(ga)b1 and decreased by the natural death rate µ, proportion

of vaccinated α and sexual interaction with infected adult class and infected adult class who

receive treatment at the rate of β1c1 and β2c2 respectively where β1 is the per partnership

transmission probability of a normal infective who is not treated, β2 is the per partnership

transmission probability of an infective who is treated and counseled. c1 is the average number

of new sexual partners acquired per unit time by those infected but not yet counseled and

treated and c2 is the average number of new sexual partners acquired per unit time by those

counseled and treated. The vaccinated adults increased by (α − δ) proportion of susceptible,
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decreased by (1 − θ) proportion of sexual interaction with infected adult class and infected

adult class who receive treatment at the rate of β1c1 and β2c2 respectively and decreased by

the natural death rate µ. The removed adults increased by δ proportion of susceptible and

decreased by the natural death rate µ. The infective adults increased by sexual interaction of

susceptible adults with infected adult class and infected adult class who receive treatment at

the rate of β1c1 and β2c2 respectively and (1− θ) proportion of sexual interaction of vaccinated

adults with infected adult class and infected adult class who receive treatment at the rate of

β1c1 and β2c2 respectively and decreased by proportion of the infective receiving treatment ε,

the rate at which the infective who do not receive treatment progress to HIV/AIDS η and the

natural death rate µ. The infected adults who receive treatment increased by proportion of the

infective receiving treatment ε and decreased by the rate at which those treated progress to

AIDS λ and the natural death rate µ. The number of full blown AIDS Cases in adults increased

by the rate at which the infective who do not receive treatment progress to HIV/AIDS η and

the rate at which those treated progress to AIDS λ, and decreased by the natural death rate

µ and disease related death rate d. The transmission of HIV from an infective to a susceptible

is through heterosexual mode and vertical transmission, there is random mixing of individuals

within the population, AIDS cases has full blown symptoms and are easily noticeable and are

not sexually interacted with and as such, they don’t transmit the virus and do not give birth

to new born, individuals in group I comprise of sexually Immature children aged 0 up to a

years and therefore do not transmit the disease, the removed class are sexually interacted with

but are not infectious and are immuned, treatment is done in the adult group only, the vaccine

acts both as the ” Leaky type ” and the ” All or Nothing type ” of vaccine. Using the above

assumptions they developed the flowchart and dynamical systems. They analyzed the stability

of the Disease Free Equilibrium, in group II since it is this group that is sexually active and

responsible for the spread. They also assumed that the AIDS cases A(t) in the population

can easily be identified from the full blown symptoms and are not associated with sexually

and as such are not involved in the spread of the diseases. They used the proportions of the

populations to enable them study the steady states.

In [5], a nonlinear mathematical model is proposed and analyzed to study dynamics of HIV/AIDS

with treatment and vertical transmission. In modeling the dynamics, the population of size

N(t) at time t with constant inflow of susceptible with rate πN where π is the rate of recruit-

ment into susceptible population is divided into five groups: Susceptible S(t), infective I(t),
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(also assumed to be infectious), pre-AIDS patients P (t), treated class T (t), and AIDS patients

A(t) with natural mortality rate µ in all classes. They assumed that: the susceptible become

HIV infected via sexual contacts with infective which may also lead to the birth of infected chil-

dren. A fraction of new born children are infected during birth and hence are directly recruited

into the infective class with a rate (1− ε)θ and others die effectively at birth (0 ≤ ε ≤ 1) where

ε is the fraction of newborns infected with HIV who dies immediately after birth and θ is the

rate of newborns infected with HIV. They did not consider direct recruitment of the infected

persons but by vertical transmission only. It is also assumed that some of the infective join the

pre-AIDS class, depending on the viral counts, with a rate σ1δ where δ is the rate of movement

from infectious class and σ1 is the fraction of δ joining the pre-AIDS class. They then proceed

with a rate γ to develop full blown AIDS. Some of the infective proceed to join the treated

class with a rate σ2δ where σ2 is the fraction of δ joining treated class and then proceed with

a rate k to develop full blown AIDS while others with serious infection directly join the AIDS

class with a rate (1 − σ1 − σ2)δ. A Fraction of ν is assumed to get treatment. To simplify

the model they assumed that the AIDS patients and those in pre-AIDS class are isolated and

sexually inactive and hence they are not capable of producing children and also they do not

contribute to viral transmission horizontally and are negligible. Taking into account the above

considerations, they prepared the schematic flow diagram and dynamical system. Analysis of

the model allows to determine the impact of treatment and vertical transmission on the trans-

mission of HIV/AIDS infection in a population and found the basic reproduction number. A

numerical study of the model has been conducted to see the effect of certain key parameters

on the spread of the disease. It is shown that by controlling the rate of vertical transmission,

the spread of the disease can be reduced significantly.

[95] They proposed a simple HIV/AIDS model which incorporates time delay during which a

newly born infected child attains sexual maturity and becomes infectious. In this model, the

sexually mature population is divided into three subclasses: the susceptible, the infective (also

assumed to be infectious) and the AIDS population whose numbers are denoted by S, I and

A. The number of total population is denoted by N(t), at any time t. In the model, they as-

sumed that the susceptible become HIV infected via sexual contacts with infective. It was also

assumed that all newborns are infected at birth. They did not consider direct inflow of other

infected persons except through vertical transmission as their purpose was to study the role of

delay, modeled as a period of sexual maturity of infected newborns. In the model, they have
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assumed that a fraction of infected newborns, who sustain treatment, joins the infective class

while the others, who do not sustain treatment, joins AIDS class after getting sexual maturity.

The infective through vertical transmission at any time t is given by γεI(t− τ), because those

infected at time (t − τ) becomes infectious at time τ later, if they do not develop AIDS by

that time. The fraction of infective which develop AIDS during the period of getting sexual

maturity, if they survive the maturity period joins the AIDS class. However, for the model to

be biologically reasonable, it may be more realistic to assume that not all those infected will

survive after time τ units, and this claim supports the introduction of the survival term e−dτ .

Thus, in their model the term γεI(t − τ)e−dτ represents the introduction of infective persons

who survive the maturity period τ in which the time taken to become infectious is τ . Here

e−dτ represents the probability that an individual survives the maturity period [t − τ, t] such

that 0 < e−dτ ≤ 1. It is also assumed that some of the infective move to AIDS class with a

rate coefficient δ to develop full blown AIDS. Using the above assumptions they constructed

schematic diagram and developed system of nonlinear ordinary differential equations. From the

dynamical system they obtained the two equilibrium points namely infection-free equilibrium

and the endemic equilibrium and also they found the basic reproduction number and they did

the analysis of the two equilibrium points.

[68] To construct the model, they first divided the total population into a susceptible class of

size S and an infectious class before the onset of AIDS and a full-blown AIDS group of size

A which is removed from the active population. Based on the facts that the infectious period

is very long (≥ 10years), they further considered several stages of the infectious period. For

simplicity, they only considered two stages, the asymptomatic phase (I) and the symptomatic

phase (J). By all sorts of treatment methods, some individuals with the symptomatic phases

can be transformed into asymptomatic individuals. By introducing discrete time delay (onset

of treatment effects) to the model, they shall establish the delay differential equation model.

The model has schematic representation and they established dynamical system. Investigating

the systems, they obtained the basic reproduction number by the method of next generation

matrix. They also found a disease-free equilibrium and the endemic equilibrium and analyzed

their stability.

[92] Consider a population of size N(t) at time t with constant inflow of susceptible at a rate Q1
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and that of HIV infective at a rate Q2 into the population. The population size N(t) is divided

into four subclasses of susceptible S(t), infective I(t) (also assumed to be infectious), pre-AIDS

patients P (t) and that of AIDS patients A(t) with natural mortality rate d in all the classes.

The susceptible become infected via sexual contacts with infective and with those in pre-AIDS

class. The total population N looses individuals at a higher rate from the class A than the oth-

ers. It may be noted that the individuals in pre-AIDS class may also interact sexually owing to

illiteracy, ignorance or other social factors especially in underdeveloped nations but the contact

rate may be very less in comparison to that of other infective (β ′ � β) . It is also assumed that

a fraction ε(0 ≤ ε ≤ 1) of all infective i.e. εδI goes to pre-AIDS class depending on the level of

viral count) while the others with serious infection i.e. (1 − ε)δI directly join the AIDS class.

However, it is assumed that virtually all individuals in pre-AIDS class will ultimately develop

the disease to join AIDS class. Here δ is the rate of movement from infectious class, so that
1
δ

denotes the average incubation period,β ′ and β are the contact rates of susceptible with in-

fective and pre-AIDS individuals respectively. With the above assumptions and considerations

they presented the flowchart and dynamical system. They analyzed the existence and stability

of the equilibrium points of the model systems. They showed the systems do not exhibit a

disease-free equilibrium due to direct inflow of infective at a constant rate. However, there ex-

ists only one non-negative equilibrium point of the model. This endemic equilibrium E∗ exists

when HIV infection persists in the population. They also considered model without inflow of

HIV infective including interaction with pre- AIDS, then the model exhibits two non-negative

equilibria namely the disease-free equilibrium and the endemic equilibrium. The disease- free

equilibrium E0 used to define the basic reproduction number R0 and they checked the stability

of E0 using R0.

Reference [93], proposed and analyzed a nonlinear mathematical model to study the effect of

vaccination on the spread of HIV/AIDS in a homogeneously mixing population of variable size

has been studied qualitatively using stability theory of nonlinear differential equations. Here

the total population is divided in to four disjoint groups: Susceptible S(t), vaccinated V (t),

infective I(t) and AIDS patients A(t). The model assumptions are:

- the susceptible become infected via sexual contacts with infective I(t) and new infections are

generated at a rate β1 with constant immigration rate Q0 and natural mortality rate d. The

susceptible population is vaccinated at a constant rate Φ.

- the vaccinated population is generated when susceptible population gets vaccinated at a con-
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stant rate Φ. The vaccine has the effect of reducing (but does not eliminate) the infection rate

by a factor of σ. It is diminished by natural deaths at a rate d and by the vaccination wears

off at a rate θ.

- infected population is generated by the HIV infection of susceptible and some fraction of

vaccinated individuals by sexual contacts with infective. It is diminished by natural mortality

rate d and by the development of clinical AIDS at a rate δ.

- The population of individuals with clinical AIDS, A(t), generates when infective population

I(t) looses individuals with disease symptoms at a rate δ. This population suffers by natural

mortality at a rate d and by disease induced deaths at a rate α. Then they represented the

schematic diagram and developed dynamical system. The model incorporates three important

parameters, the vaccination campaign Φ, measure of vaccine efficiency σ and the rate at which

vaccine wears off θ. It is found that a vaccination campaign Φ, howsoever large, may fail to

eradicate the disease. However, if the vaccination strategy is such that R(Φ) < 1 < R0 (i.e.

σ is low enough) then without vaccination HIV infection will persist in the population and

increasing the rate of vaccination would lead to ensure disease eradication.

In [94] they considered a population of size N(t) at time t with constant inflow of susceptible

with a rate Q0. The population size N(t) is divided into four subclasses of susceptible S(t),

infective I(t) (also assumed to be infectious), pre-AIDS patients P (t) and AIDS patients A(t)

with natural mortality rate d in all the classes. In the model, they assume that the susceptible

become HIV infected via sexual contacts with infective which may also lead to the birth of

infected children. It is assumed that a fraction of new born children are infected at birth and

hence are directly recruited into the infective class with a rate (1−ε)θ and others die effectively

at birth (0 ≤ ε ≤ 1). They did not consider direct recruitment of other infected persons but

by vertical transmission only. The interaction between susceptible and infective is assumed to

be of standard mass action type. It is also assumed that some of the infective move to join

pre-AIDS class,depending on the viral counts, with a rate σδ and then proceed with a rate

µ to develop full blown AIDS while others with serious infection directly join the AIDS class

with a rate (1 − σ)δ where 0 ≤ σ ≤ 1. To simplify the model, it is reasonable to assume

that the AIDS patients and those in pre-AIDS class are exposed and sexually inactive as they

are isolated and hence are not capable of producing children they also do not contribute to

viral transmission horizontally are taken negligible. It is remarked here that these assumptions

are valid in developed countries following stringent screening measures but may not be true
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in under developed nations due to poor medical facilities or the social stigma attached with

the disease. Using the above assumptions they constructed flowchart and developed dynamical

system. They analyzed the model and obtained the result that in order to reduce the spread of

the disease, the number of sexual partners as well as unsafe sexual interaction with an infective

is to be restricted. They also found that the disease becomes more endemic due to immigration.

If the rate of migration is restricted into susceptible community, the spread of the disease can

also be kept under control. The effect of an increase in disease-induced death rate is, however,

to decrease the AIDS patients population.

A model for the HIV-infection transmission in a male homosexual cohort analyzed by con-

sidering two types of infected individuals. Those that are infected but not under any sort of

clinical or therapeutical treatment and those who are under treatment. The two groups of in-

fective differ in their incubation time, contacts with the susceptible individuals, and probability

of transmission. The analytical results show that change in sexual behavior is important in

lowering prevalence and incidence rate and, eventually, in driving the population toward the

disease-free equilibrium [115].

Mathematical models here serve as tools for understanding the epidemiology of Human Immun-

odeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) if they are carefully

constructed. The research emphasis is on the epidemiological impacts of AIDS and the rate of

spread of HIV/AIDS in any given population through the numericalization of the Basic repro-

ductive rate of infection (R0). Applicable Deterministic models, Classic Endemic Model (SIR),

Commercial Sex Workers (CSW) model, Dynamic model and Stability Analysis are explained.

The models show that AIDS disease progressively increases with years and it is thus concluded

that if the current trend is unchecked, a catastrophic AIDS epidemic (Pandemic) will occur in

the near future [82].

In [20], they proposed and analyzed a mathematical model for HIV/AIDS transmission with

varying population size in a homogeneously mixing population. The model subdivides the

human population into four mutually-exclusive compartments: susceptible individuals (S);

HIV-infected individuals with no clinical symptoms of AIDS (the virus is living or developing

in the individuals but without producing symptoms or only mild ones) but able to transmit

23



HIV to other individuals (I); HIV-infected individuals under ART treatment (the so called

chronic stage) with a viral load remaining low (C); and HIV-infected individuals with AIDS

clinical symptoms (A). They assumed that HIV-infected individuals with and without AIDS

symptoms, have access to ART treatment. HIV-infected individuals with no AIDS symptoms,I,

progress to the class of individuals with HIV infection under ART treatment, C, at a rate φ,

and HIV-infected individuals with AIDS symptoms are treated for HIV at a rate α. They also

assumed that HIV-infected individuals with AIDS symptoms, A, that start treatment, move

to the class of HIV-infected individuals, I, and will move to the chronic class, C, only if the

treatment is maintained. HIV-infected individuals with no AIDS symptoms, I, that do not

take ART treatment, progress to the AIDS class, A, at rate ρ. Only HIV-infected individuals

with AIDS symptoms, A, suffer from an AIDS induced death, at a rate d. These assumptions

represented by the flow chart and dynamical system. They analyzed the dynamics and obtained

the two equilibria.

Based on the above Literature review we developed the Mathematical model on the dynamics of

Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome (HIV/AIDS) infection

in Ethiopia.
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Chapter 3

Methodology

3.1 Data analysis

Mathematical modeling of complex biological systems can be mostly carried out in a deter-

ministic manner. Deterministic models of epidemiology are usually described by differential

equations. Of which are two types; ordinary differential equations and partial differential

equations. In this thesis, our models derived from ordinary differential equations. They were

analyzed by classifying their steady states. We now define and give theorems that are relevant

to the thesis.

3.1.1 Ordinary differential equations

Definition: (Ordinary differential equations)

An ordinary differential equation of order n is an equation which contains derivatives of an

unknown function y(t) which is denoted as f(y, dy
dt
, d

2y
dt2
, d

3y
dt3
, ..., d

ny
dtn
, t) = 0

Definition: (System of ordinary differential equations)

A system of differential equations is a system which contains two or more number of differential

equations at the same time which is denoted as

dxi
dt

= F (x(t), t)

Where

x(t) = (x1(t), x2(t), x3(t), ..., xn(t))T
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F = (f1, f2, f3, ..., fn)T and fi = fi(x1(t), x2(t), x3(t), ..., xn(t), t)

Definition: (steady states / equilibrium points)

The point X∗ in Rn is an equilibrium point or steady state of the system of the first order

differential equation dX
dt

= F (X) is obtained by making dX
dt

= 0 and satisfies F (X∗) = 0.

3.1.2 Stability of the steady states

Stability by linearization

For most dynamical systems the equilibrium point (fixed point) of a system of nonlinear dif-

ferential equations plays an important role in the analysis of the models, we therefore give the

definition of a fixed point and describe the analysis of the fixed point below. Let f : Rn −→ Rn

be a C1 map and suppose that p is a point such that f(p) = 0. That is p is an equilibrium

point for the differential equation y
′(t) = f(y(t)). The linear part of f at p denoted by Df(p)

is the matrix of partial derivative at p. For yεRn we have

f (y) =



f1 (y)

f2 (y)

.

.

.

fn (y)


The functions fi are called the components of f . We define

Df (p) =



∂f1
∂y1

(p) ∂f1
∂y2

(p) . . . ∂f1
∂yn

(p)
∂f2
∂y1

(p) ∂f2
∂y2

(p) . . . ∂f2
∂yn

(p)
...

∂fn
∂y1

(p)

...
∂fn
∂y2

(p)

. . .

. . .

...
∂fn
∂yn

(p)


Called Jacobian matrix and the stability of a flow of a nonlinear system can be studied using

different approaches if this algebraic sign of the Eigenvalues of the Jacobian matrix is easily

identified. But if the algebraic sign of these Eigenvalues are not determined easily we can use

and we restrict our self to Routh-Hurwitz stability criterion.
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3.1.3 Routh – Hurwitz stability criterion

Finding the roots of the characteristic equation of the Jacobian matrix i.e. poles to determine

the stability of the system. In the analysis, the characteristic equations are mostly large and

complex. Hence it is difficult to simplify them into roots (like those of order 4 and above). For

such situations, Routh- Hurwitz Method provides an easy and quick method to determine the

stability without the need to disintegrate the characteristic equation. Routh- Hurwitz Stability

Criterion is based on ordering the coefficients of the characteristic equation into an array, also

known as Routh Array.

Suppose the characteristic equation of a Jacobian matrix of the system is given as:

pn(λ) = anλ
n + an−1λ

n−1 + an−2λ
n−2 + ...+ a1λ

1 + a0 = 0

To determine whether this system is stable or not, we have to check the two necessary but not

sufficient conditions that all the roots have negative real parts:

(a) all the polynomial coefficients must be the same sign and

(b) all the polynomial coefficients must be nonzero.

Thus; if these condition are satisfied, then from the given equation, we will form Routh Array

as shown below:
λn an an−2 an−4 an−6...

λn−1 an−1 an−3 an−5 an−7...

λn−2 b1 b2 b3 b4...

λn−3 c1 c2 c3 c4...

. .

. .

. .

λ1

λ0

Where the a′is are the polynomial coefficients and the coefficients in the rest of the table are

computed using the following pattern.

To determine whether this system is stable or not, check the following conditions:

1. Two necessary but not sufficient conditions that all the roots have negative real parts

are: all the polynomial coefficients must have the same sign and all the polynomial coefficients

must be nonzero. If this condition is satisfied then compute the Routh-Hurwitz array as follows

b1 = −1
an−1

∣∣∣∣∣∣∣
an an−2

an−1 an−3

∣∣∣∣∣∣∣ = −1
an−1

(anan−3 − an−2an−1)
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b2 = −1
an−1

∣∣∣∣∣∣∣
an an−4

an−1 an−5

∣∣∣∣∣∣∣ = −1
an−1

(anan−5 − an−4an−1)

b3 = −1
an−3

∣∣∣∣∣∣∣
an−2 an−6

an−3 an−7

∣∣∣∣∣∣∣ = −1
an−3

(an−2an−7 − an−3an−6)

c1 = −1
b1

∣∣∣∣∣∣∣
an−1 an−3

b1 b2

∣∣∣∣∣∣∣ = −1
b1

(an−1b2 − b1an−3)

c2 = −1
b1

∣∣∣∣∣∣∣
an−1 an−5

b1 b3

∣∣∣∣∣∣∣ = −1
b1

(an−1b3 − b1an−5)

2. The necessary condition that all roots have negative real parts is that all elements of

the first column of the array have the same sign. The number of changes of sign equals the

number of roots with positive real parts.

3. Special case 1: The first element of a row is zero, but some other elements in the row are

nonzero. In this case, simply replace the zero elements by ε, complete the table development,

and then interpret the results assuming that ε is a small number of the same sing as the element

above it. The results must be interpreted in the limit as ε→ 0.

4. Special case 2: All the elements of a particular row are zero. In this case, some of the

roots of the polynomial are located symmetrically about the origin of the plane. e.g: a pair of

purely imaginary roots. The zero row will always occur in a row associated with an odd power

of λ. The row just above the zero row holds the coefficients of the auxiliary polynomial. The

roots of the auxiliary polynomial are the symmetrically placed roots. Be careful to remember

that the coefficients in the array skip powers of λ from one coefficient to the next.

3.1.4 Basic Reproduction Number

Two important concepts in modeling outbreaks of infectious diseases are the basic reproduction

number, universally denoted by, and the generation time (the average time from symptom onset

in a primary case to symptom onset in a secondary case), which jointly determine the likelihood

and speed of epidemic outbreaks.

In studying any epidemiological model: Identifying the threshold value is extremely important.

This threshold quantity which determines whether an epidemic occurs or the disease simply

dies out. This quantity is called the basic reproduction number, denoted by R0 which can be

defined as the number of secondary infections caused by a single infective introduced into a

population.
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It is a concept in the epidemiology of infectious diseases and is a measure of how infectious a

disease is, and is required if you wish to calculate how many people you need to vaccinate if you

are to achieve. When somebody gets an infectious disease, they may pass it on to nobody else, or

they may infect one, two or more other people, who become secondary cases. The reproduction

number usually denoted by R0, is the average or mean number of secondary cases caused by

each case of an infectious disease, during the infectious period [67]. Basically the reproduction

number will depend on a large number of factors, including: How the infectious organism is

spread? Behaviors which affect the likelihood of spread such as social mixing, sexual and feeding

practices and so on. The basic reproduction number R0 is also known as basic reproductive rate

or basic reproductive ratio is the expected number of secondary cases produced by a typical

primary case in an entirely susceptible population. When R0 < 1 the infection will die out but

any value R0 > 1 implies it will spread without control measures and higher numbers are more

likely to cause epidemics. In cases where R0 = 1, the disease becomes endemic, meaning the

disease remains in the population at a consistent rate, as one infected individual transmits the

disease to one susceptible. The basic reproduction number R0 is proportionate to: the length

of time that the case remains infectious (duration of infectiousness), the number of contacts a

case has with susceptible hosts per unit time (the contact rate), and the chance of transmitting

the infection during an encounter with a susceptible host (the transmission probability) and

can be expressed mathematically as:

R0 = cpd

Where c the number of contacts per unit time,p is the transmission probability per contact,

and d is the duration of infectiousness [44]. In other words this infective individual makes

βN contacts per unit time producing new infections with a mean infectious period of 1
γ

and

therefore, the basic reproduction number is obtained by

R0 = β

γ

This value quantifies the transmission potential of a disease. If the basic reproduction number

falls below one i.e. the infective may not pass the infection on during the infectious period, the

infection dies out and if R0 > 1 there is an epidemic in the population [[108], [109]].

A method for calculating basic reproduction number

Here we briefly sketch and apply to a more epidemiological model the method by Van den

Driesch and Warmouth (2002) on calculating the basic reproduction number R0. Consider

29



a heterogeneous population whose individuals are distinguishable by age, behaviour, spatial

position and/or stage of the disease, but nevertheless can be grouped in to n homogeneous

compartments. That is, the parameters may vary compartment to compartment, but are iden-

tical for all individuals within a given compartment. Let x = (x1, ..., xn)T , xi ≥ 0 for all

i = 1, ..., n are the vector of densities of individuals in each compartment. Let us sort the

compartments so that the first m compartments correspond to infected or addicted individuals.

In order to compute R0, it is important to distinguish new infections from all other changes in

the host population. Let Fi(x) be the rate of appearance of new infections in compartment i,

V +
i (x) be the transfer rate of individuals into compartment i by all other means, and V −i (x)

be the rate transfer of individuals out of compartment i. It is assumed that each function

is continuously differentiable at least twice in each variable. Any model of infectious disease

dynamics can be formulated as follows:
dxi
dt

= fi(x) = Fi(x)− Vi(x)where i = 1, ..., n

Vi(x) = V −i (x)− V +
i (x)

If x0 is the disease free equilibrium (DFE) and fi(x) satisfy those technical assumptions, then

the derivatives Df(x0) and DV (x0) can be partitioned as

F 0

0 0

 and

 v 0

J3 J4


where F and v are the m×m matrices defined by

F =
[
∂fi
∂xj

(x0)
]

and v =
[
∂vi
∂xj

(x0)
]

with 1 ≤ i , j ≤ m

Moreover, f is non-negative, v is invertible with eigenvalues whose real parts are positive, and

all eigenvalues of J4 have positive real part.

Now, consider the rate of infected or addicted individual introduced into compartment k of a

disease-free population. The (j, k) entry of v−1 is the mean length of time this individual spends

in compartment j during its life time, assuming that the population remains near the disease

free equilibrium DFE and barring re-infection or re-addicted. The (i, j) entry of F is the rate at

which infected individuals in compartment j produce new infections in compartment i. Hence

the (i, j) entry of the product FV −1 is the expected number of new infections in compartment

i produced by the infected or addicted individual originally introduced into compartment k.
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The matrix Fv−1 is usually referred to as the next generation matrix. Setting

R0 = ρ(Fv−1)

where ρ(Fv−1) denotes the spectral radius of a matrix Fv−1 (that is, the Eigenvalue with the

maximum absolute value). The theorem of van den Driesch and Warmouth (2002) states that,

R0 is a threshold parameter for local stability of the DFE; consider the disease transmission

model given by (A) with fi(x) satisfying the above mentioned technical assumptions. If x0 is

the DFE of this model, then x0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.2 Sensitivity analysis

The parameter values and assumptions of any model are subject to change and error. Sensitivity

analysis (SA) is the investigation of these potential changes & errors and their impacts on

conclusions to be drawn from the model. Sensitivity analysis is commonly used to determine

the robustness of model predictions to parameter values (since there are usually errors in data

collection and presumed parameter values). Here we use it to discover parameters that have a

high impact on reproduction number R0, and should be targeted by intervention strategies.

We calculate the sensitivity indices of the reproductive number, R0, to the parameters in the

model. These indices tell us how crucial each parameter is to disease transmission and preva-

lence. The normalized forward sensitivity index of a variable to a parameter is the ratio of the

relative change in the variable to the relative change in the parameter. When the variable is

a differentiable function of the parameter, the sensitivity index may be alternatively defined

using partial derivatives [78].

Definition: The normalized forward sensitivity index of a variable, u that depends differen-

tiable on a parameter p, is defined as:

SI(p) = ∂u

∂p
× p

u

If the magnitude of sensitivity index is high for the parameter p out of other parameters then

we say that p is more sensitive parameter.
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3.3 Liapunov function

Technique for verifying stability is to seek an aggregated summarizing function that continually

decreases towards a minimum as the system evolves. Suppose that x is an equilibrium point

of a given dynamical system. A Liapunov function for the system and the equilibrium point x

is a real valued function V ; which is defined over a region Ω of the state space that contains x

and satisfies the three requirements:

1. V is continuous

2. V (x) has a unique minimum at x with respect to all other points in Ω.

3. Along any trajectory of the system contained in Ω; the value of V never increases.

Definition: A function V defined on a region Ω of the state space and containing x is a

Liapunov function if it satisfies the following three requirements

1. V is continuous and has continuous first partial derivatives

2. V (x) has a unique minimum at x with respect to all other points in Ω

3. The function V
′(x) = ∇V (x)f(x) satisfies V ′(x) ≤ 0 for all x(t) in Ω.

Theorem 3.1. (Liapunov Theorem)

If there exists a Liapunov function V (x); then the equilibrium point x is stable. If, furthermore,

the function V
′(x) is negative for every point then the stability is asymptotic.
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Chapter 4

Treatment and Inflow Infective

Immigrants on the Dynamics of

HIV/AIDS

4.1 Introduction

Diseases can be transmitted many ways, some of which can be classified as either horizontal

or vertical. In the case of HIV/AIDS, horizontal transmission can result from direct physical

contact between an infected individual and a susceptible individual. Vertical transmission, on

the other hand, can result from direct transfer of a disease from an infected mother to an un-

born or newborn offspring. Diseases that can be transmitted vertically include chagas, dengue

fever, hepatitis B and HIV/AIDS just to name a few. Vertical transmission of HIV/AIDS can

occur during pregnancy, delivery or breastfeeding and is influenced by many factors, including

maternal viral load and the type of delivery [88]. According to [7] and [111], about 20% of

the children infected with HIV develop AIDS in the first year of their lives, and most of them

die by the age of 4 years. The others, up to 80% of infected children, develop symptoms of

HIV/AIDS at school entry age (7-9 years) or even during adolescence.

The first simple HIV Mathematical epidemic model goes back to Anderson [91] in 1986. By

then behaviour change was recognized as the major way of combating the spread of HIV/AIDS

epidemic given that there was no treatment or vaccine to the virus. After the discovery of Anti-

retroviral treatment, modeling of HIV/AIDS was directed towards incorporating behaviour
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change and effects of treatment. Incorporating treatment and social behaviour posed a chal-

lenge to HIV/AIDS mathematical modeling because treatment acts both in the positive and

negative direction. It reduces the infectiousness of an infected individual reducing the probabil-

ity of transmission from an infective to a susceptible. On the contrary anti- retroviral therapies

increases the lifespan of the HIV Infectives and as such they can infect more people if the

treatment does not reduce infectiousness with no change in social behaviour. These directions

included the models by Valesco - Hernandez and Hsieh 1994 [40] who concluded that only sig-

nificant reductions in the transmission probability can contain the spread of the epidemic. Such

reductions could be through adoption of safer sexual practices or through reductions in viral

load due to treatment. A model by Ying -Yen and Cooke [41] in 2000 on Behaviour change

and treatment of core groups and its effects on the spread of HIV/AIDS showed that behaviour

change and treatment can eradicate the disease however if the treatment and behaviour change

levels do not reach critical values, detrimental effects could be realized resulting from slower

progression to AIDS without sufficiently lower transmission rates resulting in increased spread

of HIV infection.

HIV/AIDS transmission in Africa is primarily through heterosexual sex and vertical trans-

mission (mother-to-child). Forty percent of all HIV/AIDS cases result from mother to child

transmission [35]. The impact of migration of population on the distribution and spread of

HIV/AIDS disease has to be analyzed properly and must be understood clearly. Migration and

immigration of the people from one country to another country due to different reasons play a

crucial role in the evolution and spread of HIV/AIDS epidemic [22, 23, 35].

The study of HIV transmission and the dynamics of the disease have been of a great interest to

both applied mathematicians and Biologists. Mathematical modeling has proved to be an im-

portant tool in analyzing the spread and control of HIV disease [9, 83]. The results of modeling

and analysis help to improve understanding of the major contributing factors to the pandemic.

Mathematical models have been studied and important inferences have been drawn in case of

epidemics like Ebola, Breast cancer, Malaria, Tuberculosis and Influenza [6, 24, 25, 60, 92].

Several researchers have developed HIV/AIDS models so as to understand and explain the

dynamics and the spread of the disease and succeeded to a large extent. Modeling and Anal-

ysis of the spread of AIDS epidemic with immigration of HIV infective is studied in [38, 92].

A theoretical framework describing the transmission of HIV/AIDS with screening of unaware

infective persons is presented in [100, 101]. The joint effect of both medical screening and

variable inflow of aware and unaware infective immigrants on the disease transmission has been

studied by [55]. Modeling the Combined Effect of Vertical Transmission and Variable Inflow of
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Infective Immigrants on the Dynamics of HIV/AIDS has been studied by [104]. The spread of

the disease due vertical transmission has also been studied by [14]. In this paper, we proposed

an improvement of the model [104] Modeling the Combined Effect of Vertical Transmission and

Variable Inflow of Infective Immigrants on the Dynamics of HIV/AIDS. The model [104] forms

the motivation for the present study. Here we have investigated the combined effect of unaware

infective immigrants, different mode of transmissions and aware infective immigrants, on the

dynamics of HIV/AIDS. The results are presented graphically and discussed qualitatively in

the following sections.

4.2 Mathematical Model

Modeling the Combined Effect of Vertical Transmission and Variable Inflow of Infective Immi-

grants on the Dynamics of HIV/AIDS studied in [104]. The flow diagram of the model and the

non- linear deterministic model of the problem are given as follows.

Figure 4.1: Flow diagram of the model [104].

The dynamical system of [104] is given as follows:
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dS

dt
= Q0 − (β1I1

N
+ β2I2

N
)S − µS

dI1

dt
= (β1I1

N
+ β2I2

N
)S + p1I1 + (1− ε)φI1 − (θ + δ1 + µ)I1

dI2

dt
= p2I2 + θI1 − (δ2 + µ)I2

dA

dt
= δ1I1 + δ2I2 − (α + µ)A

Here the initial conditions are considered to be

S(0) = S0, I1(0) = I10, I2(0) = I20 and A(0) = A0

4.2.1 Model Assumptions

Here in the present study we develop a mathematical model to describe the population dynamics

of HIV/AIDS disease based on the following assumptions:

(i) The population under study is heterogeneous and varying with time.

(ii) The whole human population is divided in to five classes.

(iii) The HIV can be transmitted by the sexual intercourse with infective peoples, vertical and

blood borne transmissions.

(iv) The full blown AIDS class is sexually inactive.

(v) Assumed that the seropositive class could not transmit the disease.

(vi) All the new infected people are assumed to be initially unaware of the infection.

(vii) The probability of transferring the disease to susceptible population by unaware infected

person is more than by aware infected person i.e β1 > β2.

(viii) The unaware infected people grow to AIDS much faster than the aware infected people

i.e δ1 > δ2.
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4.2.2 Compartments of population for the present model

In this section we have provided compartmentalization of the people. That is, the total popula-

tion is divided into compartments. We have also described the flow of the people among these

compartments. Notations and the description of the model parameters are also included. Flow

diagram containing the compartments and flow directions is given for better understanding of

the model. A dynamical system is constructed that describes the model. Mathematical analysis

of the model is conducted. The mathematical modeling of the spread of HIV / AIDS disease

among the population requires the whole human population to be divided in to five classes.

The whole of the human population at any time t is a variable and is denoted by N(t). The

five classes are as follows: (i) susceptible class the population size of this class at any time t is

denoted by S(t) . The susceptible human has not yet infected by the disease but likely to get

infected in future. (ii) Unaware infective class the population size of this class at any time t is

denoted by I1(t). The unaware infective humans have already infected by the disease but they

do not know that they were already infected. (iii) Aware infective class the population size of

this class at any time t is denoted by I2(t). The aware infective humans have already infected

by the disease and they know that they were already infected. (iv) AIDS class the population

size of this class at any time t is denoted by A(t). The AIDS class people are already AIDS

patients and (v) Seropositive class the population size of this class at any time t is denoted by

Sp(t). The Seropositive class people are HIV positive who are keeping themselves from unsafe

sex and those who are taking ART treatment.

4.2.3 Flow of the People among the Compartments

People will join the susceptible compartment S(t) by natural birth. Some of these people will

leave this compartment due to natural deaths and some others will go to I1(t) compartment

after getting infected. The remaining people will stay in the S(t) compartment itself. People of

S(t) compartment are likely to get infected by the people of I1(t) and I2(t) compartments only.

But the people of AIDS compartment A(t) being physically too weak to participate in sexual

activities, cannot transfer infection to susceptible people. In the present study the authors

considered that the transfer of HIV from infected people to susceptible people is by sexual

intercourse and transferring HIV by any other means like sharing needles; blood transfusion

and the like. In to I1(t) compartment some people will enter from S(t) after getting infected,
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some others will enter by immigration from other places and some more will enter by vertical

transmission. From I1(t) compartment some people will go to I2(t) after becoming aware of

the infection, some people will go to Sp(t) because of keeping themselves well and unsafe sex,

some will go to A(t) after conformation of full-fledged AIDS disease, some people will die with

natural reasons, and others will stay back in I1(t) compartment itself. In to I2(t) compartment

some people will enter from I1(t) after getting aware of the infection and some others will enter

by immigration from other places. From I2(t) compartment some people will go to Sp(t) after

taking proper care for themselves and those who are taking ART, some people will go to A(t)

after conformation of full-fledged AIDS disease, some people will die with natural reasons, and

others will stay back in I2(t) compartment itself. In to Sp(t) compartment people will enter

from both I1(t) and I2(t) compartments after taking care of themselves and those who are

taking ART. From Sp(t) compartment people will leave when they die naturally. In to A(t)

compartment people will enter from both I1(t) and I2(t) compartments after conformation of

full-fledged AIDS disease. From A(t) compartment people will leave when they die naturally

or die due to AIDS disease.

Description of the Model Parameters

We assume that the people are recruited into susceptible class at a constant rate of Q0. This

recruitment into the susceptible class is due to natural births. The people of susceptible class are

likely to become infected through sexual contact and blood borne transmissions with the people

of I1(t) and I2(t) classes. Thus, people from S(t) will go to I1(t) with a rate of [β1I1 + β2I2] S
N

and σ[I1+I2] S
N

respectively. Here the parameters β1 and β2 are the horizontal transmission rate

to susceptible people by unaware and aware infective humans respectively and σ is the rate of

transmission of the disease by blood borne to susceptible people by unaware and aware infective

humans respectively. Note that in this model we consider β1 > β2.That is, the probability of

transferring the disease to susceptible population by unaware infected person is more than by

aware infected person. People of S(t) after getting infected will initially go to I1(t) but not

to I2(t). This is because, all the infected people are assumed to be initially unaware of the

infection. Further, the people of S(t) compartment are assumed to die naturally with a rate

of µ. People will enter intoI1(t) compartment from S(t) with a rate of [β1I1 + β2I2] S
N

and

σ[I1 + I2] S
N

, some others will enter due to immigration from other places at a rate of p1 and

some others will enter due to vertical transmission at a rate of (1−ε)φI1. It is assumed that the

sexual contact between susceptible and unaware infected persons lead to the birth of infected

children with a rate of φ. Of these newly born but infected children a fraction ε dies during the

birth due to infection and the remaining complementary fraction (1− ε) will enter into I1 class.

38



From I1(t) compartment some people will go to I2(t) after becoming aware of the disease at a

rate of θ, and some others will go to A(t) compartment after confirmation of full AIDS disease

at a rate of δ1 and some others will go to Sp(t) compartment due to taking care of themselves

at a rate of k1. People of I1(t) compartment are assumed to die with natural reasons and leave

the compartment at a rate of µ. People will enter into I2(t) compartment from I1(t) after

becoming aware of the disease with a rate of θ and some others will enter due to immigration

from other places at a rate of p2. People will go to Sp(t) after taking care of themselves at

a rate of k2, people will go to A(t) compartment after confirmation of full AIDS disease at a

rate of δ2. People of I2(t) compartment are assumed to die with natural reasons and leave the

compartment at a rate of µ. People will enter into Sp(t) compartment from I1(t) and I2(t)

compartments at a rate of k1 and k2 respectively. People of Sp(t) compartment are assumed to

die with natural reasons and leave the compartment at a rate of µ. People will enter into A(t)

compartment from I1(t) and I2(t) compartments at a rate of δ1 and δ2 respectively. Further, in

this study we assume that δ1 > δ2 since the unaware infected people grow to AIDS much faster

than the aware infected people. People of A(t) compartment are assumed to die with natural

reasons at a rate of µ and die with AIDS disease at a rate of α and leave the compartment.

4.2.4 Flow Diagram of the Model

Using the above assumptions we developed the following flow diagram.

Figure 4.2: Flow diagram of the present model.
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Model Equations

Based on the assumptions and the flow diagram of the present model, the dynamics of the

HIV/AIDS transmission is governed by a system of non-linear ordinary differential equations

as follows:

dS

dt
= Q0 − [β1I1 + β2I2] S

N
− σ[I1 + I2] S

N
− µS (4.1)

dI1

dt
= [β1I1 + β2I2] S

N
+ σ[I1 + I2] S

N
+ p1I1 + (1− ε)φI1 − (k1 + θ + δ1 + µ)I1 (4.2)

dI2

dt
= p2I2 + θI1 − k2I2 − (δ2 + µ)I2 (4.3)

dSp
dt

= k1I1 + k2I2 − µSp (4.4)
dA

dt
= δ1I1 + δ2I2 − (α + µ)A (4.5)

Here the initial conditions are considered to be

S(0) = S0, I1(0) = I10, I2(0) = I20, Sp(0) = Sp0 and A(0) = A0 (4.6)

4.2.5 Model properties

System (4.1−4.5) will be analyzed in a domain Ω ⊂ R5
+ where Ω = {(S, I1, I2, Sp, A)εR5

+}.

Theorem 4.1. The solutions of system (4.1−4.5) with initial conditions satisfy (4.6) S(t) >

0, I1(t) > 0, I2(t) > 0, Sp(t) > 0, A(t) > 0 for all t > 0. The region Ω ⊂ R5
+ is positively

invariant and attracting with respect to system (4.1−4.5).

Proof. To show the positivity of the solution of the dynamical system comprising the equations

(4.1−4.5), we have to consider and verify each differential equation and show that their solution

is positive.

We define:

t = sup{t > 0 : S(t) > 0, I1(t) > 0, I2(t) > 0, Sp(t) > 0 and A(t) > 0}

From the continuity of S(t) > 0, I1(t) > 0, I2(t) > 0, Sp(t) > 0 and A(t) > 0 , we deduce that

t > 0. Now if t = +∞, then the claim holds. That is, S(t) > 0, I1(t) > 0, I2(t) > 0, Sp(t) > 0

and A(t) > 0 for all t > 0. But if 0 < t < +∞, from the definition of t it follows that,

S(t) = 0 or I1(t) = 0 or I2(t) = 0 or Sp(t) = 0 or A(t)=0

Now, first let us consider the differential equation (4.1) of the dynamical system
dS
dt

= Q0 − [β1I1 + β2I2] S
N
− σ[I1 + I2] S

N
− µ
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⇒ dS
dt

+ [q + µ]S = Q0 where q(t) = [(β1 + σ)I1(t) + (β2 + σ)I2(t)] 1
N(t) . This is a first order

linear ordinary differential equation. Now we can find the integrating factor

µ1(t) = e
∫

[q+µ]dt = e(Q(t)+µt) where Q(t) is the anti-derivative of q(t). Multiply all the terms in

the differential equation by the integrating factor and do some simplification.

e(Q(t)+µt) dS
dt

+ [q + µ]e(Q(t)+µt)S = Q0e
(Q(t)+µt)

⇒ (e(Q(t)+µt)S(t))′ = Q0e
(Q(t)+µt)

Integrating both sides∫ t
0(e(Q(s)+µs)S(s))′ds =

∫ t
0 Q0e

(Q(s)+µs)ds

⇒ e(Q(s)+µs)S(s)|t0 =
∫ t

0 Q0e
(Q(s)+µs)ds

⇒ e(Q(t)+µt)S(t)− eQ(0)S(0) =
∫ t

0 Q0e
(Q(s)+µs)ds

⇒ e(Q(t)+µt)S(t) = eQ(0)S(0) +
∫ t
0 Q0e

(Q(s)+µs)ds

⇒ S(t) = eQ(0)

e(Q(t)+µt)S(0) + 1
e(Q(t)+µt)

∫ t
0 Q0e

(Q(s)+µs)ds

⇒ S(t) = S(0)e(−Q(t)+Q(0)−µt) +
∫ t

0 Q0e
((Q(s)−Q(t))+µ(s−t))ds

From this solution that S(t) is positive since S(0) > 0, Q0 > 0 and the exponential function

always positive.

Secondly let us consider the differential equation (4.2).
dI1
dt

= [β1I1 + β2I2] S
N

+ σ[I1 + I2] S
N

+ p1I1 + (1− ε)φI1 − (k1 + θ + δ1 + µ)I1

⇒ dI1
dt

+ [K − (β1 + σ) S
N

]I1 = (β1 + σ) I2S
N

where K = (k1 + θ + δ1 + µ)− p1 − (1− ε)φ

This is a first order linear ordinary differential equation. We can find the integrating factor

⇒ µ1(t) = e
∫

[K−(β1+σ) S
N

]dt = e(Kt−(β1+σ)Q(t)) where Q(t) is the anti-derivative of S(t)
N(t)

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

e(Kt−(β1+σ)Q(t)) dI1
dt

+ [K − β1 + σ) S
N

]e(Kt−(β1+σ)Q(t))I1 = (β1 + σ) I2S
N
e(Kt−(β1+σ)Q(t)

⇒ (e(Kt−(β1+σ)Q(t))I1(t))′ = (β1 + σ) I2S
N
e(Kt−(β1+σ)Q(t))

Integrating both sides from 0 to t will give us∫ t
0(e(Ks−(β1+σ)Q(s))I1(s))′ds =

∫ t
0(β1 + σ) I2S

N
e(Ks−(β1+σ)Q(s))ds

⇒ e(Ks−(β1+σ)Q(s))I1(s)|t0 =
∫ t

0(β1 + σ) I2S
N
e(Ks−(β1+σ)Q(s))ds

⇒ e(Kt−(β1+σ)Q(t))I1(t)− e−(β1+σ)Q(0)I1(0) =
∫ t

0(β1 + σ) I2S
N
e(Ks−(β1+σ)Q(s))ds

⇒ e(Kt−(β1+σ)Q(t))I1(t) = e−(β1+σ)Q(0))I1(0) +
∫ t
0(β1 + σ) I2S

N
e(Ks−(β1+σ)Q(s))ds

⇒ I1(t) = e−(β1+σ)Q(0)

e(Kt−(β1+σ)Q(t)) I1(0) + 1
e(Kt−(β1+σ)Q(t))

∫ t
0(β1 + σ) I2S

N
e(Ks−(β1+σ)Q(s))ds

⇒ I1(t) = I1(0)e−Kt+(β1+σ)Q(t)−(β1+σ)Q(0)) + e−Kt+(β1+σ)Q(t)) ∫ t
0(β1 + σ) I2S

N
e(Ks−(β1+σ)Q(s))ds

since I1(0) > 0 and from the definition of t, we see that S(t) > 0, I2(t) > 0 and also the

exponential function always positive, then the solution I1(t) > 0. Hence, I1(t) could not be

zero that is I1(t) 6= 0.
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Thirdly, let us consider the differential equation (4.3)
dI2
dt

= p2I2 + θI1 − k2I2 − (δ2 + µ)I2

⇒ dI2
dt

+ hI2 = θI1 where h = (k2 + δ2 + µ− p2)

This is a first order linear ordinary differential equation. Now we can find the integrating factor

µ1(t) = e
∫
hdt = eht

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eht dI2
dt

+ hehtI2 = ehtθI1

⇒ (ehtI2(t))′ = ehtθI1

Integrating both sides from 0 to t will give us∫ t
0(ehsI2(s))′ds =

∫ t
0 e

hsθI1ds

⇒ (ehsI2(s))|t0 =
∫ t

0 e
hsθI1ds

⇒ ehtI2(t)− I2(0) =
∫ t

0 e
hsθI1ds

⇒ ehtI2(t) = I2(0) +
∫ t

0 e
hsθI1ds

⇒ I2(t) = 1
eht
I2(0) + 1

eht

∫ t
0 e

hsθI1ds

⇒ I2(t) = I2(0)e(−ht) + e(−ht) ∫ t
0 e

hsθI1ds

since I2(0) > 0 and from the definition of t, we see that I1(t) > 0 and also the exponential

function always positive, then the solution I2(t) > 0. Hence, I2(t) could not be zero.

Fourthly, let us consider the differential equation (4.4).
dSp
dt

= k1I1 + k2I2 − µSp
⇒ dSp

dt
+ µI2 = k1I1 + k2I2

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1(t) = e
∫
µdt = eµt

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eµt dSp
dt

+ µeµtSp = eµt(k1I1 + k2I2)

⇒ (eµtSp)
′ = eµt(k1I1 + k2I2)

Integrating both sides from 0 to t will give us∫ t
0(eµsSp(s))

′
ds =

∫ t
0 e

µs(k1I1 + k2I2)ds

⇒ (eµsSp(s))|t0 =
∫ t

0 e
µs(k1I1 + k2I2)ds

⇒ eµtSp(t)− Sp(0) =
∫ t

0 e
µs(k1I1 + k2I2)ds

⇒ eµtSp(t) = Sp(0) +
∫ t

0 e
µs(k1I1 + k2I2)ds

⇒ Sp(t) = 1
eµt
Sp(0) + 1

eµt

∫ t
0 e

µs(k1I1 + k2I2)ds
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⇒ Sp(t) = Sp(0)e−µt + e−µt
∫ t
0 e

µs(k1I1 + k2I2)ds

since Sp(0) > 0 and from the definition of t, we see that I1(t) > 0, I2(t) > 0 and also the

exponential function always positive, then the solution Sp(t) > 0. Hence, Sp(t) could not be

zero.

Finally, let us consider the differential equation (4.5).
dA
dt

= δ1I1 + δ2I2 − (α + µ)A

⇒ dA
dt

+ (α + µ)A = δ1I1 + δ2I2

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1(t) = e
∫

(α+µ)dt = e(α+µ)t

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

e(α + µ)tdA
dt

+ (α + µ)e(α+µ)tA = e(α+µ)t(δ1I1 + δ2I2)

⇒ (e(α+µ)tA)′ = e(α+µ)t(δ1I1 + δ2I2)

Integrating both sides from 0 to t will give us∫ t
0(e(α+µ)sA(s))′ds =

∫ t
0 e

(α+µ)s(δ1I1 + δ2I2)ds

⇒ (e(α+µ)sA(s))|t0 =
∫ t

0 e
(α+µ)s(δ1I1 + δ2I2)ds

⇒ e(α+µ)tA(t)− A(0) =
∫ t

0 e
(α+µ)s(δ1I1 + δ2I2)ds

⇒ e(α+µ)tA(t) = A(0) +
∫ t

0 e
(α+µ)s(δ1I1 + δ2I2)ds

⇒ A(t) = 1
e(α+µ)tA(0) + 1

e(α+µ)t

∫ t
0 e

(α+µ)s(δ1I1 + δ2I2)ds

⇒ A(t) = A(0)e−(α+µ)t + e−(α+µ)t ∫ t
0 e

(α+µ)s(δ1I1 + δ2I2)ds

since A(0) > 0 and from the definition of t, we see that I1(t) > 0, I2(t) > 0 and also the

exponential function always positive, then the solution A(t) > 0. Hence, A(t) could not be

zero.

Therefore all the state variables at t could not be zero, implies that t is not finite. Consequently

t = +∞, so that for all t ≥ 0, S(t) > 0, I1(t) > 0, I2(t) > 0, Sp(t) > 0, and A(t) > 0. By this we

have shown that all the solutions of system (4.1) to (4.5) are in R5
+, provided that the initial

conditions are positive.

We now show that all feasible solutions are uniformly bounded in Ω.

Theorem 4.2. The feasible region Ω of the system (4.1) to (4.5) is defined as:

Ω = {(S(t), I1(t), I2(t), Sp(t), A(t))εR5
+ : 0 < N(t) ≤ Q0

µ
}

Proof. We assume that all state variables and parameters are positive.
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Here we have N = S + I1 + I2 + Sp + A then
dN
dt

= dS
dt

+ dI1
dt

+ dI2
dt

+ dSp
dt

+ dA
dt

Summing up all the five equations from systems (4.1) to (4.5) and assuming the inequality

p1I1 + (1− ε)φI1 + p2I2 ≤ αA we obtain dN
dt
≤ Q0 − µN

⇒ dN
Q0−µN ≤ dt integrating both sides∫ t

0
dN

Q0−µN ≤
∫ t

0 ds⇒ −1
µ

[ln(Q0 − µN(t))− ln(Q0 − µN(0))] ≤ t

⇒ [ln(Q0 − µN(t))− ln(Q0 − µN(0))] ≥ −µt

⇒ ln[Q0−µN(t)
Q0−µN(0) ] ≥ −µt

⇒ [Q0−µN(t)
Q0−µN(0) ] ≥ e−µt

⇒ Q0 − µN(t) ≥ e−µt(Q0 − µN(0))

⇒ Q0 − µN(t) ≥ Q0e
−µt − µN(0)e−µt

⇒ µN(t) ≤ Q0 −Q0e
−µt + µN(0)e−µt ≤ Q0 + µN(0)e−µt

⇒ N(t) ≤ Q0
µ

+N(0)e−µt

Thus as t −→∞ we have 0 < N(t) ≤ Q0
µ

which indicates that the total population is bounded.

4.3 Stability Analysis of Disease Free and Endemic Equi-

librium Points

In this section we identify the equilibrium points of the model developed in this study and

provided as a system of equations from (4.1) to (4.5). We also analyze their stability conditions

and present the results. The system exhibits two types of equilibrium points; disease free

equilibrium point and endemic equilibrium point.

4.3.1 Disease Free Equilibrium Point

The disease free equilibrium of the model (4.1) to (4.5), is obtained by settingdS
dt

= dI1
dt

= dI2
dt

=
dSp
dt

= dA
dt

= 0. Further at the disease free equilibrium point there are neither infective people
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nor AIDS patients. Then

dS

dt
= Q0 − [β1I1 + β2I2] S

N
− σ[I1 + I2] S

N
− µS = 0

dI1

dt
= [β1I1 + β2I2] S

N
+ σ[I1 + I2] S

N
+ p1I1 + (1− ε)φI1 − (k1 + θ + δ1 + µ)I1 = 0

dI2

dt
= p2I2 + θI1 − k2I2 − (δ2 + µ)I2 = 0

dSp
dt

= k1I1 + k2I2 − µSp = 0
dA

dt
= δ1I1 + δ2I2 − (α + µ)A = 0

This system reduced to

Q0 − µS = 0 Since at disease free we have I1 = I2 = A = Sp = 0. Then Q0 − µS = 0

⇒ µS = Q0

S = Q0
µ

Thus the disease free equilibrium of the model is given by E0 = (Q0
µ
, 0, 0, 0, 0).

Basic Reproduction number

The reproduction number is defined as the average number of secondary cases produced by a

typical infected individual during his or her entire life as infectious or infectious period when

introduced or allowed to live in a population of susceptible [26]. We shall now compute the

basic reproduction number of the present model using the next generation method. The basic

reproduction number is a threshold quantity used to study the spread of an infection disease

in epidemiological modeling and it is the spectral radius of the next generation matrix. It is

defined as R0 = ρ(FV −1) here FV −1 = [∂Fi(x0))
∂xj

][∂Vi(x0)
∂xj

]−1 where Fi is the rate of appearance of

new infections in the compartment i; Vi is the transfer of individuals in and out of compartment

i.

Here we consider the disease manifests compartment for simplification of our work.

Fi(S, I1, I2, Sp, A) =

f1(S, I1, I2, Sp, A)

g1(S, I1, I2, Sp, A)



=

[β1I1 + β2I2] S
N

+ σ[I1 + I2] S
N

0



Vi(S, I1, I2, Sp, A) =

f2(S, I1, I2, Sp, A)

g2(S, I1, I2, Sp, A)
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=

(k1 + θ + δ1 + µ)I1 − (p1 + (1− ε)φ)I1

−θI1 − p2I2 + (k2 + δ2 + µ)I2



F = DFi =

∂f1
∂I1

∂f1
∂I2

∂g1
∂I1

∂g1
∂I2



=

[(β1 + σ) S
N

(β2 + σ) S
N

0 0



At disease free equilibrium point we have S ≈ N . Thus

F =

(β1 + σ) (β2 + σ)

0 0



V = DVi =

∂f2
∂I1

∂f2
∂I2

∂g2
∂I1

∂g2
∂I2



=

(k1 + θ + δ1 + µ)− (p1 + (1− ε)φ) 0

−θ (k2 + δ2 + µ)− p2



To get V −1, we use the adjoint matrix method.

V −1 = 1
det(V )adj(V )

Where

det(V ) =

∣∣∣∣∣∣∣
(k1 + θ + δ1 + µ)− (p1 + (1− ε)φ) 0

−θ (k2 + δ2 + µ)− p2

∣∣∣∣∣∣∣

= (k1 + θ + δ1 + µ− (p1 + (1− ε)φ))(k2 + δ2 + µ− p2)

adj(V ) =

k2 + δ2 + µ− p2 0

θ k1 + θ + δ1 + µ− (p1 + (1− ε)φ)



Let ∆1 = k1 + θ + δ1 + µ− p1 − (1− ε)φ and ∆2 = k2 + δ2 + µ− p2

Then

V −1 = 1
∆1∆2

∆2 0

θ ∆1
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=

 1
∆1

0
θ

∆1∆2
1

∆2



thus

FV −1 =

β1 + σ β2 + σ

0 0


 1

∆1
0

θ
∆1∆2

1
∆2



=

β1+σ
∆1

+ θ(β2+σ)
∆1∆2

β2+σ
∆2

0 0



We find the eigenvalues of FV −1 by solving the characteristic equation |FV −1 − λI| = 0

⇒

∣∣∣∣∣∣∣
β1+σ
∆1

+ θ(β2+σ)
∆1∆2

− λ β2+σ
∆2

0 −λ

∣∣∣∣∣∣∣ = 0

⇒ (−λ)(β1 + σ

∆1
+ θ(β2 + σ)

∆1∆2
− λ) = 0

⇒ λ1 = 0 and λ2 = β1+σ
∆1

+ θ(β2+σ)
∆1∆2

thus the spectral radius of FV −1 is given by R0 =

max[λ1, λ2] = λ2

Therefore the basic reproduction number of the model is

R0 = β1 + σ

∆1
+ θ(β2 + σ)

∆1∆2
= (k2 + δ2 + µ− p2)(β1 + σ) + θ(β2 + σ)

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)(k2 + δ2 + µ− p2)
In order to assess the contribution of unaware and aware infected population on the dynamics

of HIV/AIDS, let us divide the basic reproduction number R0 of the present model in to the

reproduction numbers of both unaware R0U and aware R0A infected population independently.

That is R0 = R0U +R0A where R0U = β1+σ
∆1

, R0A = θ(β2+σ)
∆1∆2

. This can also be more analyzed as

follows.

If we assume that the rates of transmissions of the disease from unaware infective are equal to

zero (i.e β1 = 0 and σ = 0), then the reproduction number R0 becomes

R0 = (k2 + δ2 + µ− p2)(β1 + σ) + θ(β2 + σ)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)(k2 + δ2 + µ− p2

= θ(β2 + σ)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)(k2 + δ2 + µ− p2)

⇒ R0 = R0A = θ(β2 + σ)
∆1∆2
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This is the reproduction number of aware infected population.

Similarly, if we assume that the rate of transmissions of the disease from aware infective are

equal to zero (i.e β2 = 0 and σ = 0), then the reproduction number R0 becomes

R0 = (k2 + δ2 + µ− p2)(β1 + σ) + θ(β2 + σ)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)(k2 + δ2 + µ− p2

= (β1 + σ)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)

⇒ R0 = R0U = β1 + σ

∆1

This is the reproduction number of unaware infected population.

We now investigate the local and global stability of the disease free equilibrium point.

Local stability of the disease free equilibrium point E0

Theorem 4.3. The disease free equilibrium point E0 of the system of ordinary differential

equations (4.1) to (4.5) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Initially at t = 0, S(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, Sp(0) ≥ 0 this means initially there is

no AIDS patient. Hence, we only consider the subsystem of four equations (4.1), (4.2), (4.3)

and (4.4). The Jacobian matrix associated with the subsystem equations at the disease free

equilibrium point E0 = (Q0
µ
, 0, 0, 0, 0) is given by:

J(E0) =



−µ −(β1 + σ) −(β2 + σ) 0

0 (β1 + σ)−∆1 (β2 + σ) 0

0 θ −∆2 0

0 k1 k2 −µ


The characteristic equation |J(E0)− λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ −(β1 + σ) −(β2 + σ) 0

0 (β1 + σ)−∆1 − λ (β2 + σ) 0

0 θ −∆2 − λ 0

0 k1 k2 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (µ+ λ)

∣∣∣∣∣∣∣∣∣∣∣
(β1 + σ)−∆1 − λ (β2 + σ) 0

θ −∆2 − λ 0

k1 k2 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0
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⇒ (µ+ λ)2

∣∣∣∣∣∣∣
(β1 + σ)−∆1 − λ (β2 + σ)

θ −∆2 − λ

∣∣∣∣∣∣∣ = 0

⇒ (µ+ λ)2[(β1 + σ −∆1 − λ)(−∆2 − λ)− θ(β2 + σ)] = 0

⇒ (µ+ λ)2[λ2 − λ(β1 + σ −∆1) + λ∆2 − (β1 + σ −∆1)∆2 − θ(β2 + σ)] = 0

⇒ (µ+ λ)2[λ2 + (−β1 − σ + ∆1 + ∆2)λ+ ∆1∆2 − (β1 + σ)∆2 − θ(β2 + σ)] = 0

⇒ (µ+ λ)2[λ2 +Bλ+ C] = 0

Where C = ∆1∆2 − (β1 + σ)∆2 − θ(β2 + σ) and B = (−β1 − σ + ∆1 + ∆2)

If R0 < 1 implies ∆2(β1+σ)+θ(β2+σ)
∆1∆2

< 1⇒ ∆2(β1 + σ) + θ(β2 + σ) < ∆1∆2

⇒ ∆1∆2 −∆2(β1 + σ)− θ(β2 + σ) > 0

⇒ C > 0

Since ∆1∆2 −∆2(β1 + σ)− θ(β2 + σ) > 0 we have (∆1 − (β1 + σ))∆2 − θ(β2 + σ) > 0

⇒ ∆1 − (β1 + σ) > 0

⇒ ∆1 − (β1 + σ) + ∆2 > 0

⇒ B > 0

Therefore the quadratic equation λ2 +Bλ+ C = 0 has two negative real roots.

In general we have all eigenvalues of the jacobian matrix negative. Hence the disease free

equilibrium point is locally asymptotically stable.

If R0 > 1 then the characteristic equation will have positive eigenvalues, so E0 is unstable.

Global stability of the disease free equilibrium point E0

Theorem 4.4. the disease free equilibrium point E0 is globally asymptotically stable if R0 < 1.

Proof. we now construct a Lyapunov function

V = α1I1 + α2I2 + α3Sp + α4A

Where αi, i = 1, 2, 3, 4 are positive constants to be determined. The time derivative of V is

given by
dV

dt
= α1

dI1

dt
+ α2

dI2

dt
+ α3

dSp
dt

+ α4
dA

dt
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=α1[(β1 + σ

N
)SI1 + (β2 + σ

N
)SI2 + (p1 + (1− ε)φ− (k1 + θ + δ1 + µ))I1]

+ α2[(p2 − (k2 + δ2 + δ))I2 + θI1] + α3[k1I1 + k2I2 − µSp] + α4[δ1I1 + δ2I2 − (α + µ)A]

=α1[(β1 + σ

N
)S + (p1 + (1− ε)φ− (k1 + θ + δ1 + µ))]I1 + α1(β2 + σ

N
)SI2 + α2(p2 − (k2 + δ2 + δ))I2

+ α2θI1 + α3k1I1 + α3k2I2 − α3µSp + α4δ1I1 + α4δ2I2 − α4(α + µ)A

=α1[(β1 + σ

N
)S −∆1)]I1 + α2θI1 + α3k1I1 + α4δ1I1 + α1(β2 + σ

N
)SI2 − α2∆2I2 + α3k2I2 + α4δ2I2

− α3µSp − α4(α + µ)A

=[α1((β1 + σ

N
)S −∆1) + α2θ + α3k1 + α4δ1]I1 + α1[(β2 + σ

N
)S − α2∆2 + α3k2 + α4δ2]I2

− α3µSp − α4(α + µ)A

≤[α1((β1 + σ)−∆1) + α2θ + α3k1 + α4δ1]I1 + α1[(β2 + σ)− α2∆2 + α3k2 + α4δ2]I2

− α3µSp − α4(α + µ)A

Take the coefficients of I2, Sp and A are equal to zero. Then we get

− α3µ = 0⇒ α3 = 0

− α4(α + µ) = 0⇒ α4 = 0

α1(β2 + σ)− α2∆2 + α3k2 + α4δ2 = 0

⇒ α1(β2 + σ)− α2

∆2 = 0 since α3 = α4 = 0

⇒ α1(β2 + σ) = α2∆2

⇒ α2 = α1(β2 + σ)
∆2

Then

dV

dt
≤ [α1((β1 + σ)−∆1) + α2θ]I1

⇒ dV

dt
≤ [α1((β1 + σ)−∆1) + α1θ(β2 + σ)

∆2
]I1

⇒ dV

dt
≤ [α1(β1 + σ)− α1∆1 + α1θ(β2 + σ)

∆2
]I1

⇒ dV

dt
≤ [α1

∆2(β1 + σ) + θ(β2 + σ)
∆2

− α1∆1]I1

⇒ dV

dt
≤ [α1

R0∆1∆2

∆2
− α1∆1]I1

⇒ dV

dt
≤ [α1R0∆1 − α1∆1]I1

⇒ dV

dt
≤ α1∆1[R0 − 1]I1

50



We note that dV
dt
≤ 0 if R0 < 1.

Furthermore, dV
dt

= 0 if and only if I1 = I2 = Sp = A = 0. Therefore, the largest compact

invariant set in (S, I1, I2, Sp, A)εΩ : dV
dt

= 0, where R0 < 1 is the singleton {E0}. LaSalle’s

(1976) invariance principle then implies that E0 is globally stable in Ω if R0 < 1 otherwise it is

unstable.

4.3.2 Endemic Equilibrium Point

We consider the system equations (4.1) to (4.5). At the endemic equilibrium point E∗ =

(S∗, I∗1 , I∗2 , S∗p , A∗), we set each right hand side in system equations to zero and express each

dependent variable in terms of I∗1 at the equilibrium point.

dS

dt
= Q0 − [β1I1 + β2I2] S

N
− σ[I1 + I2] S

N
− µS = 0

dI1

dt
= [β1I1 + β2I2] S

N
+ σ[I1 + I2] S

N
+ p1I1 + (1− ε)φI1 − (k1 + θ + δ1 + µ)I1 = 0

dI2

dt
= p2I2 + θI1 − k2I2 − (δ2 + µ)I2 = 0

dSp
dt

= k1I1 + k2I2 − µSp = 0
dA

dt
= δ1I1 + δ2I2 − (α + µ)A = 0

Solving equation (4.1) and (4.2) we get

Q0 − µS∗ + p1I
∗
1 + (1− ε)φI∗1 − (k1 + θ + δ1 + µ)I∗1 = 0

⇒ µS∗ = Q0 + p1I
∗
1 + (1− ε)φI∗1 − (k1 + θ + δ1 + µ)I∗1

⇒ S∗ = Q0 + [p1 + (1− ε)φ− (k1 + θ + δ1 + µ)]I∗1
µ

⇒ S∗ = Q0 −∆1I
∗
1

µ

From the equation (4.3) we have

p2I
∗
2 + θI∗1 − k2I

∗
2 − (δ2 + µ)I∗2 = 0

⇒ (k2 + δ2 + µ− p2)I∗2 = θI∗1

⇒ I∗2 = θI∗1
(k2 + δ2 + µ− p2)

⇒ I∗2 = θI∗1
∆2
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From equation (4.1)we have

Q0 − [β1I
∗
1 + β2I

∗
2 ] S

∗

N∗
− σ[I∗1 + I∗2 ] S

∗

N∗
− µS∗ = 0

⇒Q0 = [β1I
∗
1 + β2I

∗
2 ] S

∗

N∗
+ σ[I∗1 + I∗2 ] S

∗

N∗
+ µS∗

⇒([β1I
∗
1 + β2I

∗
2 ] 1
N∗

+ σ[I∗1 + I∗2 ] 1
N∗

+ µ)S∗ = Q0

⇒([β1I
∗
1 + β2

θI∗1
∆2

] 1
N∗

+ σ[I∗1 + θI∗1
∆2

] 1
N∗

+ µ)(Q0 −∆1I
∗
1

µ
) = Q0

⇒(β1I
∗
1 ∆2 + β2θI

∗
1

∆2
+ σ∆2I

∗
1 + σθI∗1
∆2

+ µN∗)(Q0 −∆1I
∗
1

µ
) = Q0N

∗

⇒(β1∆2 + β2θ

∆2
)Q0

µ
I∗1 + (σ∆2 + σθ

∆2
)Q0

µ
I∗1 +Q0N

∗ −∆1(β1∆2 + β2θ + σ∆2 + σθ

µ∆2
)(I∗1 )2

−∆1N
∗I∗1 = Q0N

∗

⇒(β1∆2 + β2θ

∆2
)Q0

µ
I∗1 + (σ∆2 + σθ

∆2
)Q0

µ
I∗1 −∆1(β1∆2 + β2θ + σ∆2 + σθ

µ∆2
)(I∗1 )2 −∆1N

∗I∗1 = 0

⇒I∗1 [(β1∆2 + β2θ

∆2
)Q0

µ
+ (σ∆2 + σθ

∆2
)Q0

µ
−∆1(β1∆2 + β2θ + σ∆2 + σθ

µ∆2
)I∗1 −∆1N

∗] = 0

⇒I∗1 = 0 which is the DFE or

I∗1 = [−∆1N
∗ + (β1∆2 + β2θ + σ∆2 + σθ

∆2
)Q0

µ
][ µ∆2

∆1(β1∆2 + β2θ + σ∆2 + σθ) ]

⇒I∗1 = [(β1∆2 + β2θ + σ∆2 + σθ)Q0 − µ∆1∆2N
∗

µ∆2
][ µ∆2

∆1(β1∆2 + β2θ + σ∆2 + σθ) ]

⇒I∗1 = µ

∆1
[Q0

µ
− ∆1∆2N

∗

β1∆2 + β2θ + σ∆2 + σθ
]

⇒I∗1 = µ

∆1
[Q0

µ
− N∗

R0
]

⇒I∗1 = µ

∆1
[Q0

µ
− ∆1∆2N

∗

β1∆2 + β2θ + σ∆2 + σθ
]

⇒I∗1 = Q0

∆1
[1− 1

R0
]

From this we can observe that I∗1 will be positive ifR0 > 1. Thus the unique endemic equilibrium

exists whenever R0 > 1,∆1 > 0 and ∆2 > 0. The endemic equilibrium is:

S∗ =
Q0−∆1

Q0
∆1

(
1− 1

R0

)
µ

= N∗

R0

I∗1 = Q0
∆1

(1− 1
R0

)

I2
∗ =

θ
Q0
∆1

(
1− 1

R0

)
∆2

=
Q0θ

(
1− 1

R0

)
∆1∆2

From the fourth equation of the system we have

k1I
∗
1 + k2I

∗
2 − µS∗p = 0

⇒ µS∗p = k1I
∗
1 + k2I

∗
2

⇒ S∗p = k1I∗1 +k2I∗2
µ

=
k1

Q0
∆1

(1− 1
R0

)+k2
Q0θ(1−

1
R0

)

∆1∆2
µ
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⇒ S∗p =
k1∆2Q0

(
1− 1

R0

)
+k2Q0θ

(
1− 1

R0

)
µ∆1∆2

From the fifth equation of the system we have

δ1I
∗
1 + δ2I

∗
2 − (α + µ)A∗ = 0

⇒ (α + µ)A∗ = δ1I
∗
1 + δ2I

∗
2

⇒ A∗ = δ1I∗1 +δ2I∗2
(α+µ) =

δ1
Q0
∆1

(
1− 1

R0

)
+δ2

Q0θ(1− 1
R0 )

∆1∆2
(α+µ)

⇒ A∗ =
δ1∆2Q0

(
1− 1

R0

)
+δ2Q0θ

(
1− 1

R0

)
(α+µ)∆1∆2

In general the unique endemic equilibrium point E∗ = (S∗, I∗1 , I∗2 , S∗p , A∗) of the system (4.1) to

(4.5) is:

S∗ = N

R0

I1
∗ = Q0

∆1

(
1− 1

R0

)

I2
∗ =

Q0θ
(
1− 1

R0

)
∆1∆2

S∗p =
k1∆2Q0

(
1− 1

R0

)
+ k2Q0θ

(
1− 1

R0

)
µ∆1∆2

A∗ =
δ1∆2Q0

(
1− 1

R0

)
+ δ2Q0θ

(
1− 1

R0

)
(α + µ) ∆1∆2

Local stability of Endemic equilibrium point

We now investigate the local stability of the endemic equilibrium point E∗.

Theorem 4.5. The positive endemic equilibrium point E∗ of the system of equations (4.1) to

(4.5) is locally asymptotically stable if R0 > 1.

Proof. the linearization of the Jacobian matrix of the system of equations (4.1) to (4.5) at any

point is

J(S, I1, I2, Sp, A) =



−a− µ −
(
β1+σ
N

)
S −

(
β2+σ
N

)
S 0 0

a
[
β1+σ
N

)
S −∆1

(
β2+σ
N

)
S 0 0

0 θ −∆2 0 0

0 k1 k2 −µ 0

0 δ1 δ2 0 − (α + µ)


Where a = [β1I1 + β2I2] 1

N
+ σ[I1 + I2] 1

N

At the endemic equilibrium point the above Jacobian matrix becomes
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J(E∗) =



−a− µ −
(
β1+σ
N

)
S∗ −

(
β2+σ
N

)
S∗ 0 0

a
(
β1+σ
N

)
S∗ −∆1

(
β2+σ
N

)
S∗ 0 0

0 θ −∆2 0 0

0 k1 k2 −µ 0

0 δ1 δ2 0 − (α + µ)



=



−a− µ −
(
β1+σ
R0

)
−
(
β2+σ
R0

)
0 0

a
(
β1+σ
R0

)
−∆1

(
β2+σ
R0

)
0 0

0 θ −∆2 0 0

0 k1 k2 −µ 0

0 δ1 δ2 0 − (α + µ)


The characteristic equation of the Jacobian matrix is |J(E∗)− λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a− µ− λ −
(
β1+σ
R0

)
−
(
β2+σ
R0

)
0 0

a
(
β1+σ
R0

)
−∆1 − λ

(
β2+σ
R0

)
0 0

0 θ −∆2 − λ 0 0

0 k1 k2 −µ− λ 0

0 δ1 δ2 0 − (α + µ)− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (α + µ+ λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−a− µ− λ −
(
β1+σ
R0

)
−
(
β2+σ
R0

)
0

a
(
β1+σ
R0

)
−∆1 − λ

(
β2+σ
R0

)
0

0 θ −∆2 − λ 0

0 k1 k2 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (α + µ+ λ) (µ+ λ)

∣∣∣∣∣∣∣∣∣∣∣
−a− µ− λ −

(
β1+σ
R0

)
−
(
β2+σ
R0

)
a

(
β1+σ
R0

)
−∆1 − λ

(
β2+σ
R0

)
0 θ −∆2 − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (α + µ+ λ) (µ+ λ)

(a+ µ+ λ)

∣∣∣∣∣∣∣
(
β1+σ
R0

)
−∆1 − λ

(
β2+σ
R0

)
θ −∆2 − λ

∣∣∣∣∣∣∣− a
∣∣∣∣∣∣∣
−
(
β1+σ
R0

)
−
(
β2+σ
R0

)
θ −∆2 − λ

∣∣∣∣∣∣∣
 =

0

⇒ (α + µ+ λ) (µ+ λ) (a+ µ+ λ) (∆2 + λ)
(
∆1 + λ−

(
β1+σ
R0

))
− (α + µ+ λ) (µ+ λ)

(
(a+ µ+ λ) θ

(
β2+σ
R0

)
+ a

[
(∆2 + λ)

(
β1+σ
R0

)
+ θ

(
β2+σ
R0

)])
= 0

⇒ (α + µ+ λ) (µ+ λ) (a+ µ+ λ) (∆1∆2 + λ∆1 + λ∆2 + λ2 −∆2
(
β1+σ
R0

)
)

− (α + µ+ λ) (µ+ λ) (a+ µ+ λ)
[
λ
(
β1+σ
R0

)
+ θ

(
β2+σ
R0

)]
+ (α + µ+ λ) (µ+ λ) a

[
∆2

(
β1+σ
R0

)
+ λ

(
β1+σ
R0

)
+ θ

(
β2+σ
R0

)]
= 0

⇒ (α + µ+ λ) (µ+ λ) (a+ µ+ λ)
[
∆1∆2 + λ∆1 + λ∆2 + λ2 −∆1∆2 − λ

(
β1+σ
R0

)]
+ (α + µ+ λ) (µ+ λ) a

[
λ
(
β1+σ
R0

)
+ ∆1∆2

]
= 0

From this we have
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(α + µ+ λ) = 0⇒ λ = −(α + µ) and

(µ+ λ) = 0⇒ λ = −µ

For the above two equations we get negative eigenvalues.

For the equation

(a+ µ+ λ)
[
λ∆1 + λ∆2 + λ2 − λ

(
β1+σ
R0

)]
+ aλ

(
β1+σ
R0

)
+ a∆1∆2 = 0

The solution can be obtained as follows:

⇒λa∆1 + λa∆2 + aλ2 − λa
(
β1 + σ

R0

)
+ λµ∆1 + λµ∆2 + µλ2 − λµ

(
β1 + σ

R0

)
+ λ2∆1

+ λ2∆2 + λ3 − λ2
(
β1 + σ

R0

)
+ λa

(
β1 + σ

R0

)
+ a∆1∆2 = 0

⇒λ3 + λ2
[
a+ µ+ ∆1 + ∆2 −

(
β1 + σ

R0

)]

+ λ

[
a1 + a∆2 − a

(
β1 + σ

R0

)
+ µ∆1 + µ∆2 − µ

(
β1 + σ

R0

)
+ a

(
β1 + σ

R0

)]
+ a∆1∆2 = 0

⇒λ3 + λ2
[
a+ µ+ ∆1 + ∆2 −

(
β1 + σ

R0

)]
+ λ

[
a∆1 + a∆2 + µ∆1 + µ∆2 − µ

(
β1 + σ

R0

)]

+ a∆1∆2 = 0

Then the above characteristic equation is given by

P (λ) = λ3 + A1λ
2 + A2λ+ A3 = 0

Where

A1 =
[
a+ µ+ ∆1 + ∆2 −

(
β1+σ
R0

)]
A2 =

[
a∆1 + a∆2 + µ∆1 + µ∆2 − µ

(
β1+σ
R0

)]
A3 = a∆1∆2

Since R0 = ∆2(β1+σ)+θ(β2+σ)
∆1∆2

we have

R0∆1∆2 = ∆2(β1 + σ) + θ(β2 + σ)

⇒ R0∆1∆2 > ∆2(β1 + σ)

⇒ ∆1 >
∆2(β1 + σ)
R0∆2

⇒ ∆1 >
(β1 + σ)
R0
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⇒ ∆1 −
(β1 + σ)
R0

> 0

Thus we can observe that A1, A2 and A3 are all positive quantities. Here we can conclude that

all coefficients of the characteristic polynomial are positive.

To see the sign of eigenvalues we use Routh – Hurwitz criteria.

Consider the following Routh – Hurwitz array
λ3 1 A2

λ2 A1 A3

λ1 B 0

λ0 C

where B = −1
A1

∣∣∣∣∣∣∣
1 A2

A1 A3

∣∣∣∣∣∣∣ and C = −1
B

∣∣∣∣∣∣∣
A1 A3

B 0

∣∣∣∣∣∣∣
Now

B = −1
A1

∣∣∣∣∣∣∣
1 A2

A1 A3

∣∣∣∣∣∣∣ = −1
A1

(A3 − A1A2)

= 1
A1

(A1A2 − A3)

= 1[
a+µ+∆1+∆2−

(
β1+σ
R0

)]
[[
a+ µ+ ∆1 + ∆2 −

(
β1 + σ

R0

)] [
a∆1 + a∆2 + µ∆1 + µ∆2 − µ

(
β1 + σ

R0

)]
− a∆1∆2

]
= 1

[a+µ+∆2+K] ([a+ µ+ ∆2 +K] [a∆1 + a∆2 + µ∆2 + µK]− a∆1∆2)

= 1
[a+µ+∆2+K] [a

2∆1 + a2∆2 + aµ∆2 + aµK + aµ∆1 + aµ∆2 + µ2∆2 + µ2K]

+ 1
[a+µ+∆2+K] [a∆1∆2 + a∆2

2 + µ∆2
2 + µ∆2K + aK∆1 + aK∆2 +Kµ∆2 + µK2 − a∆1∆2]

= 1
[a+µ+∆2+K] [a

2∆1 + a2∆2 + 2aµ∆2 + aµK + aµ∆1 + µ2∆2 + µ2K]

+ 1
[a+µ+∆2+K] [a∆2

2 + µ∆2
2 + µ∆2K + aK∆1 + aK∆2 +Kµ∆2 + µK2] > 0

Where K = ∆1 − (β1+σ
R0

> 0

⇒ B > 0

C = −1
B

∣∣∣∣∣∣∣
A1 A3

B 0

∣∣∣∣∣∣∣ = −1
B

(0−BA3)

= BA3

B
= A3 > 0

⇒ C > 0

Since all elements of the first column of the array have the same sign then by Routh – Hurwitz

criteria all roots of the characteristic equation have negative real part, thus from above result

we can say that the endemic equilibrium point is locally asymptotically stable.
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Global Stability of Endemic Equilibrium point

Theorem 4.6. the endemic equilibrium point E∗ is globally asymptotically stable if R0 > 1.

Proof. Consider the following Lyapunov function

V = (S − S∗lnS) + (I1 − I∗1 lnI1) + γ1 (I2 − I∗2 lnI2) + γ2
(
Sp − S∗p lnSp

)
+ γ3 (A− A∗lnA)

Where γ′is for i = 1, 2, 3 are non-negative quantities.

Differentiating V with respect to time gives
dV
dt

=
(
1− S∗

S

)
dS
dt

+
(
1− I∗1

I1

)
dI1
dt

+ γ1
(
1− I∗2

I2

)
dI2
dt

+ γ2
(
1− S∗p

Sp

)
dSp
dt

+ γ3
(
1− A∗

A

)
dA
dt

Substituting the expressions for the derivatives in dV
dt

, it follows that
dV
dt

=
(
1− S∗

S

) [
Q0 −

[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S − µS

]
+
(
1− I∗1

I1

) [[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S −∆1I1

]
+ γ1

(
1− I∗2

I2

)
[θI1 −∆2I2]

+γ2
(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp] + γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

Using the relation Q0 =
[(

β1+σ
N

)
I∗1 +

(
β2+σ
N

)
I∗2
]
S∗ + µS∗, we have from the first equation of

the system (4.1)−(4.5) at the steady state that dV
dt

can be written as
dV
dt

=
(
1− S∗

S

) [[(
β1+σ
N

)
I∗1 +

(
β2+σ
N

)
I∗2
]
S∗ + µS∗ −

[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S − µS

]
+
(
1− I∗1

I1

) [[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S −∆1I1

]
+ γ1

(
1− I∗2

I2

)
[θI1 −∆2I2]

+γ2
(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp] + γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

This can then be simplified to
dV
dt

=
(
1− S∗

S

) (
β1+σ
N

)
I∗1S

∗ +
(
1− S∗

S

) (
β2+σ
N

)
I∗2S

∗ +
(
1− S∗

S

)
(S∗ − S)µ−

(
β1+σ
N

)
I1S

−
(
β2+σ
N

)
I2S +

(
β1+σ
N

)
I1S

∗ +
(
β2+σ
N

)
I2S

∗ +
(
1− I∗1

I1

) [[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S −∆1I1

]
+γ1

(
1− I∗2

I2

)
[θI1 −∆2I2]+γ2

(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp]+γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

Using the relation at the steady state

∆1I
∗
1 =

[(
β1+σ
N

)
I∗1 +

(
β2+σ
N

)
I∗2
]
S∗, ∆2I

∗
2 = θI∗1 , µS∗p = k1I

∗
1 + k2I

∗
2 , µS∗p = k1I

∗
1 + k2I

∗
2 ,

(α + µ)A = δ1I
∗
1 + δ2I

∗
2

We again simplify
dV
dt

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
1− S∗

S

) (
β1+σ
N

)
I∗1S

∗ +
(
1− S∗

S

) (
β2+σ
N

)
I∗2S

∗ −
(
β1+σ
N

)
I1S

−
(
β2+σ
N

)
I2S +

(
β1+σ
N

)
I1S

∗ +
(
β2+σ
N

)
I2S

∗ +
(
β1+σ
N

)
I1S +

(
β2+σ
N

)
I2S

−
(
β1+σ
N

)
I∗1S −

(
β2+σ
N

)
I∗1
I1
I2S −

(
1− I∗1

I1

)
∆1I1 + γ1

(
1− I∗2

I2

)
[θI1 −∆2I2]

+γ2
(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp] + γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
1− S∗

S
− S

S∗

) (
β1+σ
N

)
I∗1S

∗ +
(
1− S∗

S

) (
β2+σ
N

)
I∗2S

∗ +
(
β1+σ
N

)
I1S

∗

+
(
β2+σ
N

)
I2S

∗ −
(
β1+σ
N

)
I∗1S −

(
β2+σ
N

)
I∗1
I1
I2S −

(
1− I∗1

I1

) [(
β1+σ
N

)
I∗1S

∗ +
(
β2+σ
N

)
I∗2S

∗
]
I1
I∗1

+γ1
(
1− I∗2

I2

)
[θI1 −∆2I2]+γ2

(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp]+γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
1− S∗

S
− S

S∗

) (
β1+σ
N

)
I∗1S

∗ +
(
1− S∗

S

) (
β2+σ
N

)
I∗2S

∗ +
(
β1+σ
N

)
I1S

∗
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+
(
β2+σ
N

)
I2S

∗ −
(
β1+σ
N

)
I∗1S −

(
β2+σ
N

)
I∗1
I1
I2S −

(
β1+σ
N

)
I1S

∗

−
(
β2+σ
N

)
I∗2S

∗ I1
I∗1

+
(
β1+σ
N

)
I∗1S

∗ +
(
β2+σ
N

)
I∗2S

∗ + γ1
(
1− I∗2

I2

)
[θI1 −∆2I2]

+γ2
(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp] + γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
I2S

∗ −
(
β1+σ
N

)
I∗1S −

(
β2+σ
N

)
I∗1
I1
I2S + γ1

(
1− I∗2

I2

)
[θI1 −∆2I2]

+γ2
(
1− S∗p

Sp

)
[k1I1 + k2I2 − µSp] + γ3

(
1− A∗

A

)
[δ1I1 + δ2I2 − (α + µ)A]

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
I2S

∗ −
(
β2+σ
N

)
I∗1
I1
I2S + γ1

(
1− I∗2

I2

)
θI1 − γ1

(
1− I∗2

I2

)
∆2I2

+γ2
(
1− S∗p

Sp

)
k1I1 + γ2

(
1− S∗p

Sp

)
k2I2 − γ2

(
1− S∗p

Sp

)
µSp + γ3

(
1− A∗

A

)
δ1I1

+γ3
(
1− A∗

A

)
δ2I2 − γ3

(
1− A∗

A

)
(α + µ)A

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
I2S

∗ −
(
β2+σ
N

)
I∗1
I1
I2S + γ1θI1 − γ1θI1

I∗2
I2
− γ1∆2I2 + γ1∆2I

∗
2 + γ2k1I1

−γ2k1
S∗p
Sp
I1 + γ2k2I2 − γ2k2

S∗p
Sp
I2 − γ2k1I

∗
1
Sp
S∗p

+ γ2k2I
∗
2
Sp
S∗p

+ γ2k1I
∗
1 + γ2k2I

∗
2 + γ3δ1I1

−γ3δ1I1
A∗

A
+ γ3δ2I2 − γ3δ2I2

A∗

A
− γ3δ1I

∗
1
A
A∗
− γ3δ2I

∗
2
A
A∗

+ γ3δ1I
∗
1 + γ3δ2I

∗
2

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
I2S

∗ −
(
β2+σ
N

)
I∗1
I1
I2S + γ1θI1

(
1− I∗2

I2

)
+ γ1∆2I

∗
2

(
1− I2

I∗2

)
+ γ2k1I1

−γ2k1
S∗p
Sp
I1 − γ2k1I

∗
1
Sp
S∗p

+ γ2k1I
∗
1 + γ2k2I2 − γ2k2

S∗p
Sp
I2 + γ2k2I

∗
2
Sp
S∗p

+ γ2k2I
∗
2

+γ3δ1I1 − γ3δ1I1
A∗

A
− γ3δ1I

∗
1
A
A∗

+ γ3δ1I
∗
1 + γ3δ2I2 − γ3δ2I2

A∗

A
− γ3δ2I

∗
2
A
A∗

+ γ3δ2I
∗
2

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
I2S

∗ −
(
β2+σ
N

)
I∗1
I1
I2S + γ1θI1

(
1− I∗2

I2

)
+ γ1θI

∗
1

(
1− I2

I∗2

)
+ γ2k1I1

+γ2k1I
∗
1

(
2− Sp

S∗p
− S∗pI1

SpI∗1

)
− γ2k1I

∗
1 + γ2k2I2 + γ2k2I

∗
2

(
2− Sp

S∗p
− S∗pI2

SpI∗2

)
− γ2k2I

∗
2 + γ3δ1I1

+γ3δ1I
∗
1

(
2− A

A∗
− A∗I1

AI∗1

)
− γ3δ1I

∗
1 + γ3δ2I2 + γ3δ2I

∗
2

(
2− A

A∗
− A∗I2

AI∗2

)
− γ3δ2I

∗
2

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
+
(
β2+σ
N

)
S∗I2

−
(
β2+σ
N

)
I∗1
I1
I2S + γ1θI

∗
1

(
1− I∗2 I1

I2I∗1

)
− γ1θI

∗
1
I2
I∗2

+ γ1θI1 + γ2k1I1 + γ2k1I
∗
1

(
2− Sp

S∗p
− S∗pI1

SpI∗1

)
−γ2k1I

∗
1 + γ2k2I

∗
2

(
2− Sp

S∗p
− S∗pI2

SpI∗2

)
− γ2k2I

∗
2 + γ3δ1I1 + γ3δ1I

∗
1

(
2− A

A∗
− A∗I1

AI∗1

)
−γ3δ1I

∗
1 + γ3δ2I2 + γ2k2I2 + γ3δ2I

∗
2

(
2− A

A∗
− A∗I2

AI∗2

)
− γ3δ2I

∗
2

The coefficient γ1 is obtained from the expression
(
β2+σ
N

)
S∗ − γ1θ

I∗1
I∗2

= 0

⇒ γ1θ
I∗1
I∗2

=
(
β2 + σ

N

)
S∗

⇒ γ1 =
(
β2 + σ

N

)
S∗I∗2
θI∗1

And the coefficient γ2 and γ3 are obtained from the expression γ3δ2 + γ2k2 = 0

⇒ γ2 = γ3 = 0 since γ′is for i = 1, 2, 3 are non-negative quantities.

Thus
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dV
dt

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− I1

I∗1

)
−
(
β2+σ
N

)
I∗1
I1
I2S +

(
β2+σ
N

)
S∗I∗2

(
1− I∗2 I1

I2I∗1

)
+
(
β2+σ
N

)
S∗I∗2
I∗1
I1

= µS∗
(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− S

S∗

)
−
(
β2+σ
N

)
I∗1
I1
I2S +

(
β2+σ
N

)
S∗I∗2

(
1− I∗2 I1

I2I∗1
− I∗1 I2

I1I∗2

)
+
(
β2+σ
N

)
S∗

I∗1 I2
I1

+
(
β2+σ
N

)
I∗2S

Note that
(
2− S

S∗
− S∗

S

)
,
(
2− S∗

S
− S

S∗

)
and

(
1− I∗2 I1

I2I∗1
− I∗1 I2

I1I∗2

)
are less than or equal to zero

by arithmetic mean -geometric mean inequality.

This gives

dV

dt
= Z − Y

Where

Z =
(
β2 + σ

N

)
S∗
I∗1 I2

I1
+
(
β2 + σ

N

)
I∗2S

and

Y = −
[
µS∗

(
2− S

S∗
− S∗

S

)
+
(
β1+σ
N

)
I∗1S

∗
(
2− S∗

S
− S

S∗

)
+
(
β2+σ
N

)
I∗2S

∗
(
2− S∗

S
− S

S∗

)]
+
(
β2+σ
N

)
I∗1
I1
I2S −

(
β2+σ
N

)
S∗I∗2

(
1− I∗2 I1

I2I∗1
− I∗1 I2

I1I∗2

)
Hence, if Z < Y then, dV

dt
will be negative definite, implying that dV

dt
< 0. Also dV

dt
= 0, if and

only if S = S∗, I1 = I∗1 , I2 = I∗2 , Sp = S∗p and A = A∗.

Therefore, the largest compact invariant set in {(S∗, I∗1 , I∗2 , S∗p , A∗)εΩ : dV
dt

= 0} is the singleton

{E∗}, where E∗ is endemic equilibrium of the system (4.1)−(4.5). By LaSalle’s invariant

principle, it then implies that E∗ is globally asymptotically stable in Ω if Z < Y .
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Chapter 5

The Dynamics of HIV/AIDS with Age

Structure and Inflow Immigrants in

Ethiopia

5.1 Introduction

HIV/AIDS remains a major global health problem affecting approximately 70 million people

worldwide causing significant morbidity and mortality [114].

In Ethiopia in 2018, 690 000 people were living with HIV. HIV incidence per 1000 uninfected

the number of new HIV infections among the uninfected population over one year among all

people of all ages was 0.24. 23 000 people were newly infected with HIV and 11 000 people died

from an AIDS-related illness. There has been progress in the number of AIDS-related deaths

since 2010, with a 45% decrease, from 20 000 deaths to 11 000 deaths. The number of new

HIV infections has also decreased, from 29 000 to 23 000 in the same period. The 90-90-90

targets envision that, by 2020, 90% of people living with HIV will know their HIV status, 90%

of people who know their HIV-positive status will be accessing treatment and 90% of people

on treatment will have suppressed viral loads. In terms of all people living with HIV, reaching

the 90-90-90 targets means that 81% of all people living with HIV are on treatment and 73%

of all people living with HIV are virally suppressed. In 2018 in Ethiopia 79% of people living

with HIV knew their status and 65% of people living with HIV were on treatment [49].

The Human Immunodeficiency Virus (HIV) infects cells of immune system such as helper T cells
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(specifically CD4+ T cells), macrophages, and dendritic cells. HIV compromises the human

immune system and reduces the ability of the body to fight back infections and diseases. The

most advanced stages of HIV infection is usually called Acquired Immunodeficiency Syndrome

(AIDS). AIDS is one of the leading causes of death worldwide that is affecting virtually every

nation. Even if HIV/AIDS is not permanently curable, main methods used to fight against

it are preventive mechanisms (which include: abstinence, faithfulness and protection) which

mainly rely on the level of behavioral change of the population, and providing Antiretroviral

Therapy (ART) for those infected [105].

Mathematical models have played a major role in increasing our understanding of the dynamics

of infectious diseases. Several models have been proposed to study the effects of some factors

on the transmission dynamics of these infectious diseases including HIV/AIDS and to provide

guidelines as to how the spread can be controlled. Among these models include those of An-

derson et al. [90] who presented a preliminary study of the transmission dynamics of HIV by

proposing a model to study the effects of various factors on the transmission of the disease,

Stilianakis et al. [76] who proposed and gave a detailed analysis of a dynamical model that

describes the pathogenesis of HIV, and Tripathi et al. [3] who proposed a model to study the

effects of screening of unaware infective on the transmission dynamics of HIV/AIDS. Several

other models proposed to study dynamics of HIV/AIDS can be found in ([[1], [11], [12], [21],

[56], [59], [69], [71], [84]], and the references therein).

To assess the impact of incidence functions in the estimation of the long-term dynamics of

the disease, mathematical models of infectious diseases are useful tools for comparing control

strategies and identifying key disease drivers as well as important areas of uncertainty that may

be prioritized for urgent research. Large amount of work done on modeling the spread of HIV

has been largely restricted to ordinary differential equations, though studies which have incor-

porated the combination of condom use, public health education campaigns, and treatment of

infected individuals for eradication of the epidemic [[57]− [117]].

Mathematical modeling enjoys popularity in both preventing and controlling infectious diseases

such as severe acute respiratory syndrome (SARS) [77], human immunodeficiency virus infec-

tion/acquired immune deficiency syndrome (HIV/AIDS) [15], H5N1 (avian flu) [112] and H1N1
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(swine flu) [87]. In recent years, a lot of efforts have been made to develop realistic diseases and

further study the asymptotic behavior of such epidemic models [119]. In the field of studying

epidemic model behavior, one of the most important parts is to analyze steady states together

with their stability [64].

This thesis considered a deterministic mathematical model for age structure, the combined effect

of unaware immigrants, different mode of transmissions and aware immigrants, for predicting

the epidemiological trends of HIV that exploits HIV surveillance data to model the disease

evolution in Ethiopia. Based on real data collected from different health sectors we recommend

some solutions which depend on our control parameters that help the stake holders to control

the spread of the considered disease.

5.2 Mathematical Model

5.2.1 Model Assumption

In the original model [117] they developed a mathematical model to describe the population

dynamics of HIV/AIDS disease based on the following assumptions:

• The population under study is heterogeneous and varying with time.

• The whole human population is divided in to five classes.

• The HIV can be transmitted by the sexual intercourse with infective peoples, vertical

transmission and blood borne transmission.

• The full blown AIDS class is sexually inactive.

• Assumed that the seropositive/treatment class could not transmit the disease.

• All the new infected people are assumed to be initially unaware of the infection.

• The probability of transferring the disease to susceptible population by unaware infected

person is more than by aware infected person i. e. β1 > β2.
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Here in the present study we develop a mathematical model by incorporating the following

assumptions to describe the population dynamics of HIV/AIDS disease:

• Susceptible people divided in to two; sexually mature and sexually immature.

• Sexually mature people infected by sexual contact and blood borne transmissions.

• Sexually immature people infected by blood borne transmission only.

• Pre-AIDS compartment is added and people from this compartment can infect susceptible

individuals with sexual contact rate β3 and blood borne transmission rate σ.

5.2.2 Compartments of population for the present model

We divided the total population N(t), into seven compartments: S1(t),S2(t),I1(t),I2(t),P (t),Sp(t),

and A(t). S1(t) represents the number of sexually mature susceptible individuals (age 15 years

and above); S2(t) represents the number of sexually immature susceptible individuals (age below

15 years); I1(t) represents the number of unaware HIV-positive individuals ; I2(t) represents

the number of aware HIV-positive individuals ; P (t) represents the number of HIV-positive

individuals in the pre-AIDS stage; Sp(t) represents the number of individuals who are receiv-

ing ART and keeping themselves from unsafe sex and behavioral change; A(t) represents the

number of individuals with full-blown AIDS.

5.2.3 Flow of the people among the compartments

The sexually mature susceptible individuals are recruited into the population at a constant

rate Q1. This sub population is reduced by infection, following effective contact with infected

individuals through sexual and blood borne at the rate [β1I1 + β2I2 + β3P ]S1
N

and σ[I1 + I2 +

P ]S1
N

respectively. It is reduced further by natural death at a rate µ. The sexually immature

susceptible individuals (age below 15 years) are recruited into the population at a constant

rate Q2. This sub population is reduced by infection, following effective contact with infected

individuals through blood borne only at the rate σ[I1 + I2 + P ]S2
N

. It is reduced further by

natural death at a rate µ. Once an individual is infected, he/she becomes infectious. The

population of HIV positive individuals or infective who do not know their status is increased

by infection of susceptible individuals at the rate [β1I1 + β2I2 + β3P ]S1
N

, σ[I1 + I2 + P ]S1
N

and
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σ[I1 +I2 +P ]S2
N

, vertical transmission at the rate of (1−ε)φ, variable inflow of unaware infective

at the rate of p1 . It is decreased by screening which leads to status awareness at the rate θ,

development to Pre-AIDS, progression to full blown AIDS, transform through treatment and

natural death at the rates , u1, δ1, k1 and µ, respectively. The population of HIV positives or

infective aware of their HIV status is generated by screening of unaware infective at the rate θ,

variable inflow of aware infective at the rate of p2 and decreased by development of pre-AIDS

at the rate u2, development of full blown AIDS at the rate δ2, transform through treatment at

the rate of k2, and natural death at the rate µ. The pre-AIDS population is increased by the

rate u1 from unaware infective and u2 from aware infective. This sub population is diminished

by progression to full blown AIDS at the rate δ3, transform through treatment k3 and natural

death at the rate µ, Treated population is increased by the rate of k1 from unaware infective,

I1, k2 from aware infective, I2 and k3 from pre-AIDS, P . It is decreased by natural death at

the rate µ. Finally, the population of individuals with AIDS is increased by progression to

full blown AIDS at the rateδ1 for unaware infective, δ2 for aware infective, δ3 for pre-AIDS

individuals. It is decreased by natural death at the rate µ and by disease-induced mortality at

the rate α.

5.2.4 Flow Diagram of the Model

Using the above assumptions we developed the following flow diagram.

Figure 5.1: Flow diagram of the present model.
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Based on the above basic assumptions and flow diagram we do have the following corresponding

dynamical system represented by seven non-linear ordinary differential equations.

dS1

dt
= Q1 − [β1I1 + β2I2 + β3P ]S1

N
− [I1 + I2 + P ]σS1

N
− µS1 (5.1)

dS2

dt
= Q2 − [I1 + I2 + P ]σS2

N
− µS2 (5.2)

dI1

dt
= [β1I1 + β2I2 + β3P ]S1

N
+ [I1 + I2 + P ]σS1

N
+ [I1 + I2 + P ]σS2

N
+ p1I1

+ (1− ε)I1φ− (k1 + θ + δ1 + µ+ u1)I1 (5.3)
dI2

dt
= p2I2 + I1θ − (k2 + δ2 + µ+ u2)I2 (5.4)

dP

dt
= u1I1 + u2I2 − (δ3 + k3 + µ)P (5.5)

dSp
dt

= k1I1 + k2I2 + k3P − µSp (5.6)
dA

dt
= δ1I1 + δ2I2 + δ3P − (α + µ)A (5.7)

With initial conditions

S1(0) = S10, S2(0) = S20, I1(0) = I10, I2(0) = I20, P (0) = P0, Sp(0) = Sp0andA(0) = A0 (5.8)
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Table 5.1: State variables of the HIV/AIDS basic model

Symbole Descripition

S1(t) Sexually immature Susceptible at time t

S2(t) Sexually mature Susceptible at time t

I1(t) HIV-infected individuals unaware of their status

I2(t) HIV-infected individuals aware of their status

P (t) Pre-AIDS individuals at time t

Sp(t) Treated individuals at time t

A(t) AIDS individuals at time t

Table 5.2: Parameters of the HIV/AIDS basic model

Parameter Parameter Description

Q1 Recruitment in to sexual mature population

Q2 Recruitment in to sexual immature population

β1 The horizontal transmission rate of unaware infective to susceptible

individuals

β2 The horizontal transmission rate of aware infective to susceptible

individuals

β3 The horizontal transmission rate of Pre-AIDS to susceptible indi-

viduals

σ Rate of transmission through blood borne

δ1 Rate at which unaware infective develop full blown AIDS

δ2 Rate at which aware infective develop full blown AIDS

δ3 Progression rate of Pre-AIDS individuals to full blown AIDS

µ Natural mortality

θ Rate of status awareness due to screening method

k1 Rate of treatment of unaware infective

k2 Rate of treatment of aware infective

k3 Rate of treatment of Pre-AIDS

p1 Rate of unaware infective immigrants

p2 Rate of aware infective immigrants
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u1 Rate of progress to Pre-AIDS from unaware infective

u2 Rate of progress to Pre-AIDS from aware infective

φ Rate of vertical transmission

ε Probability of death at birth

α AIDS induced death rate

5.2.5 Model properties

System 5.1− 5.7 will be analyzed in a domain Ω ⊂ R7
+ where Ω = {(S1, S2, I1, I2, P, Sp, A) ∈

R7
+}.

Theorem 5.1 (positivity). The solutions of the dynamical system (5.1− 5.7) with initial con-

ditions (5.8) satisfy S1(t) > 0, S2(t) > 0, I1(t) > 0, I2(t) > 0, Sp(t) > 0, P (t) > 0, A(t) > 0 for

all t > 0. The region Ω ⊂ R7
+ is positively invariant and attracting with respect to system (5.1−

5.7).

Proof. To show the positivity of the solution of the dynamical system comprising the equations

5.1− 5.7, we have to consider and verify each differential equation and show that their solution

is positive.

We define:

t = sup{t > 0 : S1(t) > 0, S2(t) > 0, I1(t) > 0, I2(t) > 0, P (t) > 0, Sp(t) > 0 and A(t) > 0}

From the continuity of S1(t) > 0, S2(t) > 0, I1(t) > 0, I2(t) > 0, P (t) > 0, Sp(t) > 0 and

A(t) > 0 , we deduce that t > 0. Now if t = +∞, then the claim holds. That is, S1(t) >

0, S2(t) > 0, I1(t) > 0, I2(t) > 0, P (t) > 0, Sp(t) > 0 and A(t) > 0 for all t > 0. But if

0 < t < +∞, from the definition of t it follows that,

S1(t) = 0 or S2(t) = 0 or I1(t) = 0 or I2(t) = 0 or P (t) = 0 or Sp(t) = 0 or A(t)=0

First let us consider the differential equation (5.1) of the dynamical system
dS1
dt

= Q1 − [β1I1 + β2I2 + β3P ] S1
N
− σ [I1 + I2 + P ] S1

N
− µS1

⇒ dS1
dt

+ [q + µ]S1 = Q1 where q (t) = [(β1 + σ) I1 (t) + (β2 + σ) I2 (t) + (β3 + σ)P (t)] 1
N(t)

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫

[q+µ]dt = eQ(t)+µt where Q(t) is the anti-derivative of q(t).

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

67



eQ(t)+µt dS1
dt

+ [q + µ] eQ(t)+µtS1 = Q1e
Q(t)+µt

⇒
(
eQ(t)+µtS1 (t)

)′
= Q1e

Q(t)+µt

Integrating both sides
t∫
0

(
eQ(s)+µsS1 (s)

)′
ds =

t∫
0
Q1e

Q(s)+µsds

⇒ eQ(s)+µsS1 (s)
∣∣∣t
0

=
t∫
0
Q1e

Q(s)+µsds

⇒ eQ(t)+µtS1 (t)− eQ(0)S1 (0) =
t∫
0
Q1e

Q(s)+µsds

⇒ eQ(t)+µtS1 (t) = eQ(0)S1 (0) +
t∫
0
Q1e

Q(s)+µsds

⇒ S1 (t) = eQ(0)

eQ(t)+µtS1 (0) + 1
eQ(t)+µt

t∫
0
Q1e

Q(s)+µsds

⇒ S1 (t) = S1 (0) e−Q(t)+Q(0)−µt +
t∫
0
Q1e

(Q(s)−Q(t))+µ(s−t)ds

From this solution that S1(t) is positive since S1(0) > 0, Q1 > 0 and the exponential function

always positive.

Secondly let us consider the differential equation (5.2).
dS2
dt

= Q2 − σ [I1 + I2 + P ] S2
N
− µS2

⇒ dS2
dt

+ [q + µ]S2 = Q2 where q (t) = [I1 (t) + I2 (t) + P (t)] σ
N(t) .

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫

[q+µ]dt = eQ(t)+µt where Q(t) is the anti-derivative of q(t).

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eQ(t)+µt dS2
dt

+ [q + µ] eQ(t)+µtS2 = Q2e
Q(t)+µt

⇒
(
eQ(t)+µtS2 (t)

)′
= Q2e

Q(t)+µt

Integrating both sides
t∫
0

(
eQ(s)+µsS2 (s)

)′
ds =

t∫
0
Q2e

Q(s)+µsds

⇒ eQ(s)+µsS2 (s)
∣∣∣t
0

=
t∫
0
Q2e

Q(s)+µsds

⇒ eQ(t)+µtS2 (t)− eQ(0)S2 (0) =
t∫
0
Q2e

Q(s)+µsds

⇒ eQ(t)+µtS2 (t) = eQ(0)S2 (0) +
t∫
0
Q2e

Q(s)+µsds

⇒ S2 (t) = eQ(0)

eQ(t)+µtS2 (0) + 1
eQ(t)+µt

t∫
0
Q2e

Q(s)+µsds

⇒ S2 (t) = S2 (0) e−Q(t)+Q(0)−µt +
t∫
0
Q2e

(Q(s)−Q(t))+µ(s−t)ds

From this solution we can observe that S2(t) is positive since S2(0) > 0, Q2 > 0 and the expo-

nential function always positive.

Thirdly let us consider the differential equation (5.3)
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dI1
dt

= [β1I1 + β2I2 + β3P ] S1
N

+ σ [I1 + I2 + P ] S1
N

+ σ [I1 + I2 + P ] S2
N

+p1I1 + (1− ε)φI1 − (k1 + θ + δ1 + µ+ u1) I1

⇒ dI1
dt

+ [K − (β1 + σ) S1
N
− σ S2

N
]I1 = (β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

where K = (k1 + θ + δ1 + µ+ u1)− p1 − (1− ε)φ

This is a first order linear ordinary differential equation.

We can find the integrating factor

µ1 (t) = e
∫

[K−(β1+σ)S1
N
−σ S2

N ]dt = eKt−(β1+σ)Q(t)−σM(t) where Q(t) is the anti-derivative of S1(t)
N(t)

and M(t) is the anti-derivative of S2(t)
N(t)

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eKt−(β1+σ)Q(t)−σM(t) dI1
dt

+ [K − (β1 + σ) S1
N
− σ S2

N
]eKt−(β1+σ)Q(t)−σM(t)I1

=
[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKt−(β1+σ)Q(t)−σM(t)

⇒
(
eKt−(β1+σ)Q(t)−σM(t)I1 (t)

)′
=
[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKt−(β1+σ)Q(t)−σM(t)

Integrating both sides from 0 to t will give us
t∫
0

(
eKs−(β1+σ)Q(s)−σM(s)I1 (s)

)′
ds

=
t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ eKs−(β1+σ)Q(s)−σM(s)I1 (s)
∣∣∣t
0

=
t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ eKt−(β1+σ)Q(t)−σM(t)I1 (t)− e−(β1+σ)Q(0)−M(0)I1 (0)

=
t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ eKt−(β1+σ)Q(t)−σM(t)I1 (t) = e−(β1+σ)Q(0)−M(0)I1 (0)

+
t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ I1 (t) = e−(β1+σ)Q(0)−M(0)

eKt−(β1+σ)Q(t)−σM(t) I1 (0)

+ 1
eKt−(β1+σ)Q(t)−σM(t)

t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ I1 (t) = I1 (0) e−Kt+(β1+σ)Q(t)−(β1+σ)Q(0)+σM(t)−M(0)

+e−Kt+(β1+σ)Q(t)+σM(t) t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−(β1+σ)Q(s)−σM(s)ds

⇒ I1 (t) = I1 (0) e−Kt+(β1+σ)Q(t)−(β1+σ)Q(0)+σM(t)−M(0)

+
t∫
0

[
(β2 + σ) I2S1

N
+ (β3 + σ)PS1

N
+ σ (I2 + P ) S2

N

]
eKs−Kt+(β1+σ)Q(t)−(β1+σ)Q(s)+σM(t)−σM(s)ds

since I1(0) > 0 and from the definition of t, we see that S1(t) > 0, S2(t) > 0, I2(t) > 0, P (t) > 0

and also the exponential function always positive, then the solution I1(t) > 0. Hence, I1(t)

could not be zero.
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Fourthly, let us consider the differential equation (5.4)
dI2
dt

= p2I2 + θI1 − (k2 + δ2 + µ+ u2) I2

⇒ dI2
dt

+ hI2 = θI1 where h = (k2 + δ2 + µ+ u2 − p2)

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫
hdt = eht

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eht dI2
dt

+ hehtI2 = ehtθI1

⇒
(
ehtI2 (t)

)′
= ehtθI1

Integrating both sides from 0 to t will give us
t∫
0

(
ehsI2 (s)

)′
ds =

t∫
0
ehsθI1ds

⇒
(
ehsI2 (s)

)∣∣∣t
0

=
t∫
0
ehsθI1ds

⇒ ehtI2 (t)− I2 (0) =
t∫
0
ehsθI1ds

⇒ ehtI2 (t) = I2 (0) +
t∫
0
ehsθI1ds

⇒ I2 (t) = 1
eht
I2 (0) + 1

eht

t∫
0
ehsθI1ds

⇒ I2 (t) = I2 (0) e−ht + e−ht
t∫
0
ehsθI1ds

since I2(0) > 0 and from the definition of t, we see that I1(t) > 0 and also the exponential

function always positive, then the solution I2(t) > 0. Hence, I2(t) could not be zero.

Fifthly, let us consider the differential equation (5.5).
dP
dt

= u1I1 + u2I2 − (δ3 + k3 + µ)P

⇒ dP
dt

+ (δ3 + k3 + µ)P = u1I1 + u2I2

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫

(δ3+k3+µ)dt = e(δ3+k3+µ)t

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

e(δ3+k3+µ)t dP
dt

+ (δ3 + k3 + µ) e(δ3+k3+µ)tP = e(δ3+k3+µ)t (u1I1 + u2I2)

⇒
(
e(δ3+k3+µ)tP

)′
= e(δ3+k3+µ)t (u1I1 + u2I2)

Integrating both sides from 0 to t will give us
t∫
0

(
e(δ3+k3+µ)sP (s)

)′
ds =

t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds
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⇒
(
e(δ3+k3+µ)sP (s)

)∣∣∣t
0

=
t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds

⇒
(
e(δ3+k3+µ)tP (t)

)
− P (0) =

t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds

⇒
(
e(δ3+k3+µ)tP (t)

)
= P (0) +

t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds

⇒ P (t) = 1
e(δ3+k3+µ)tP (0) + 1

e(δ3+k3+µ)t

t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds

⇒ P (t) = P (0) e−(δ3+k3+µ)t + e−(δ3+k3+µ)t
t∫
0
e(δ3+k3+µ)s (u1I1 + u2I2) ds

since P (0) > 0 and from the definition of t, we see that I1(t) > 0, I2(t) > 0 and also the

exponential function always positive, then the solution P (t) > 0. Hence, P (t) could not be

zero.

Let us consider the differential equation (5.6).
dSp
dt

= k1I1 + k2I2 + k3P − µSp
⇒ dSp

dt
+ µSp = k1I1 + k2I2 + k3P

This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫
µdt = eµt

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

eµt dSp
dt

+ µeµtSp = eµt (k1I1 + k2I2 + k3P )⇒ (eµtSp)
′
= eµt (k1I1 + k2I2 + k3P )

Integrating both sides from 0 to t will give us
t∫
0

(eµsSp (s))
′
ds =

t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

⇒ (eµsSp (s))|t0 =
t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

⇒ eµtSp (t)− Sp (0) =
t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

⇒ eµtSp (t) = Sp (0) +
t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

⇒ Sp (t) = 1
eµt
Sp (0) + 1

eµt

t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

⇒ Sp (t) = Sp (0) e−µt + e−µt
t∫
0
eµs (k1I1 + k2I2 + k3P ) ds

since Sp(0) > 0 and from the definition of t, we see that I1(t) > 0, I2(t) > 0, P (t) > 0 and also

the exponential function always positive, then the solution Sp(t) > 0. Hence, Sp(t) could not

be zero.

Finally, let us consider the differential equation (5.7).
dA
dt

= δ1I1 + δ2I2 + δ3P − (α + µ)A

⇒ dA
dt

+ (α + µ)A = δ1I1 + δ2I2 + δ3P
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This is a first order linear ordinary differential equation.

Now we can find the integrating factor

µ1 (t) = e
∫

(α+µ)dt = e(α+µ)t

Multiply all the terms in the differential equation by the integrating factor and do some sim-

plification.

e(α+µ)t dA
dt

+ (α + µ) e(α+µ)tA = e(α+µ)t(δ1I1 + δ2I2 + δ3P )

⇒
(
e(α+µ)tA

)′
= e(α+µ)t (δ1I1 + δ2I2 + δ3P )

Integrating both sides from 0 to t will give us
t∫
0

(
e(α+µ)sA (s)

)′
ds =

t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

⇒
(
e(α+µ)sA (s)

)∣∣∣t
0

=
t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

⇒ e(α+µ)tA (t)− A (0) =
t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

⇒ e(α+µ)tA (t) = A (0) +
t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

⇒ A (t) = 1
e(α+µ)tA (0) + 1

e(α+µ)t

t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

⇒ A (t) = A (0) e−(α+µ)t + e−(α+µ)t
t∫
0
e(α+µ)s (δ1I1 + δ2I2 + δ3P ) ds

since A(0) > 0 and from the definition of t, we see that I1(t) > 0, I2(t) > 0, P (t) > 0 and also

the exponential function always positive, then the solution A(t) > 0. Hence, A(t) could not be

zero.

Therefore all the state variables at t could not be zero, implies that t is not finite. Consequently

t = +∞, so that for all t ≥ 0, S1(t) > 0, S2(t) > 0, I1(t) > 0, I2(t) > 0, P (t) > 0, Sp(t) > 0,

and A(t) > 0. By this we have shown that all the solutions of system (5.1) to (5.7) are in R7
+,

provided that the initial conditions are positive.

We now show that all feasible solutions are uniformly bounded in Ω.

Theorem 5.2 (Boundedness). The feasible region Ω of the dynamical system (5.1) to (5.7) is

defined as:

Ω = {(S1(t), S2(t), I1(t), I2(t), P (t), Sp(t), A(t)) ∈ R7
+ : 0 < N(t) 6 Q1+Q2

µ
} is bounded.

Proof. We assume that all state variables and parameters are positive.

Here we have N = S1 + S2 + I1 + I2 + P + Sp + A then
dN
dt

= dS1
dt

+ dS2
dt

+ dI1
dt

+ dI2
dt

+ dP
dt

+ dSp
dt

+ dA
dt

Summing up all the seven equations from systems (5.1) to (5.7) and assuming the inequality

p1I1 + (1− ε)φI1 + p2I2 ≤ αA we obtain dN
dt
≤ Q1 +Q2 − µN
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⇒ dN
Q1+Q2−µN ≤ dt integrating both sides

t∫
0

dN
Q1+Q2−µN ≤

t∫
0
ds

⇒ −1
µ

[ln (Q1 +Q2 − µN (t))− ln (Q1 +Q2 − µN (0))] ≤ t

⇒ [ln (Q1 +Q2 − µN (t))− ln (Q1 +Q2 − µN (0))] ≥ −µt

⇒ ln
[
Q1+Q2−µN(t)
Q1+Q2−µN(0)

]
≥ −µt

⇒
[
Q1+Q2−µN(t)
Q1+Q2−µN(0)

]
≥ e−µt

⇒ Q1 +Q2 − µN (t) ≥ e−µt (Q1 +Q2 − µN (0))

⇒ Q1 +Q2 − µN (t) ≥ (Q1 +Q2) e−µt − µN (0) e−µt

⇒ µN (t) ≤ Q1 +Q2 − (Q1 +Q2) e−µt + µN (0) e−µt ≤ Q1 +Q2 + µN (0) e−µt

⇒ N (t) ≤ Q1+Q2
µ

+N (0) e−µt

Thus as t −→ ∞ we have 0 < N(t) ≤ Q1+Q2
µ

which indicates that the total population is

bounded.

5.3 Stability Analysis of Disease Free and Endemic Equi-

librium Points

In this section we identify the equilibrium points of the model developed in this study and

provided as a system of equations from (5.1) to (5.7). We also analyze their stability conditions

and present the results. The system exhibits two types of equilibrium points; disease free

equilibrium point and endemic equilibrium point.

5.3.1 Disease Free Equilibrium Point

The disease free equilibrium point of the model (5.1) to (5.7)is obtained by setting dS1
dt

= dS2
dt

=
dI1
dt

= dI2
dt

= dP
dt

= dSp
dt

= dA
dt

= 0. Further at the disease free equilibrium point there are neither
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infective people nor AIDS patients. Then

dS1

dt
= Q1 − [β1I1 + β2I2 + β3P ]S1

N
− [I1 + I2 + P ]σS1

N
− µS1 = 0

dS2

dt
= Q2 − [I1 + I2 + P ]σS2

N
− µS2 = 0

dI1

dt
= [β1I1 + β2I2 + β3P ]S1

N
+ [I1 + I2 + P ]σS1

N
+ [I1 + I2 + P ]σS2

N
+ p1I1

+ (1− ε)I1φ− (k1 + θ + δ1 + µ+ u1)I1 = 0
dI2

dt
= p2I2 + I1θ − (k2 + δ2 + µ+ u2)I2 = 0

dP

dt
= u1I1 + u2I2 − (δ3 + k3 + µ)P = 0

dSp
dt

= k1I1 + k2I2 + k3P − µSp = 0
dA

dt
= δ1I1 + δ2I2 + δ3P − (α + µ)A = 0

This system reduced to

Q1 − µS1 = 0

Q2 − µS2 = 0

Since at disease free we have I1 = I2 = P = A = Sp = 0

Thus Q1 − µS1 = 0

⇒ µS1 = Q1

⇒ S1 = Q1
µ

And Q2 − µS2 = 0 ⇒ µS2 = Q2

⇒ S2 = Q2
µ

And hence we obtain the disease free equilibrium point of the dynamical system is E0 =

(Q1
µ
, Q2
µ
, 0, 0, 0, 0, 0).

Basic Reproduction number

The basic reproduction number is defined as the average number of secondary infections that

occur when one infective is introduced into a completely susceptible host population [26]. We

can calculate the basic reproduction number, R0, using the next generation approach proposed

by van den Driessche and Watmough [85]. According to this approach, in order to compute the

basic reproduction number, it is important to distinguish new infections from all other class

transitions in the population. The infected classes are I1, I2, and P . We can write system

(5.1)-(5.7) as: ẋ = F (x) − V (x), V = V − − V +, where x = (S1, S2, I1, I2, P, Sp, A). F is the
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rate of appearance of new infection in each class, V − is the rate of transfer into each class by

all other means, and V + is the rate of transfer of the infectious individuals out of each class.

Using system of differential equations below

dI1

dt
= [β1I1 + β2I2 + β3P ]S1

N
+ [I1 + I2 + P ]σS1

N
+ [I1 + I2 + P ]σS2

N
+ p1I1

+ (1− ε)I1φ− (k1 + θ + δ1 + µ+ u1)I1 = 0
dI2

dt
= p2I2 + I1θ − (k2 + δ2 + µ+ u2)I2 = 0

dP

dt
= u1I1 + u2I2 − (δ3 + k3 + µ)P = 0

dA

dt
= δ1I1 + δ2I2 + δ3P − (α + µ)A = 0

dSp
dt

= k1I1 + k2I2 + k3P − µSp = 0
dS1

dt
= Q1 − [β1I1 + β2I2 + β3P ]S1

N
− [I1 + I2 + P ]σS1

N
− µS1 = 0

dS2

dt
= Q2 − [I1 + I2 + P ]σS2

N
− µS2 = 0

The associated matrices, F (x) for the new infection terms, and V (x) for the remaining transition

terms are respectively given by,

F(x) =



[β1I1 + β2I2 + β3P ]S1
N

+ σ[I1 + I2 + P ]S1
N

+ σ[I1 + I2 + P ]S2
N

0

0

0

0

0

0



V (x) =



(k1 + θ + δ1 + µ+ u1)I1 − p1I1 − (1− ε)φI1

(k2 + δ2 + µ+ u2)I2 − p2I2 − θI1

(δ3 + k3 + µ)P − u1I1 − u2I2

(α + µ)A− δ1I1 − δ2I2 − δ3P

µSp − k1I1 − k2I2 − k3P

µS1 −Q1

µS2 −Q2
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Evaluating the partial derivatives of F(x) and bearing in mind that system (5.1) − (5.7) has

three infected classes, namely I1, I2 and P , we obtain

F (x) =


(β1 + σ)S1

N
+ σ S2

N
(β2 + σ)S1

N
+ σ S2

N
(β3 + σ)S1

N
+ σ S2

N

0 0 0

0 0 0


At disease free equilibrium point we have S1 + S2 ≈ N . Thus

F =


β1

S1
S1+S2

+ σ β2
S1

S1+S2
+ σ β3

S1
S1+S2

+ σ

0 0 0

0 0 0



⇒ F =


β1

Q1
Q1+Q2

+ σ β2
Q1

Q1+Q2
+ σ β3

Q1
Q1+Q2

+ σ

0 0 0

0 0 0


Similarly, the partial derivatives of V(x) with respect to I1, I2 and P at E0 gives

V =


(k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ) 0 0

−θ (k2 + δ2 + µ+ u2 − p2) 0

−u1 −u2 (δ3 + k3 + µ)


To get V −1, we use the adjoint matrix method.

V −1 = 1
det (V )adj (V )

Then

det (V ) =

∣∣∣∣∣∣∣∣∣∣∣
∇1 0 0

−θ ∇2 0

−u1 −u2 ∇3

∣∣∣∣∣∣∣∣∣∣∣
where ∇1 = (k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ), ∇2 = (k2 + δ2 + µ+ u2 − p2) and ∇3 =

(δ3 + k3 + µ)

To get the adjoint matrix of V , first we will find the cofactors of each entry of matrix V as

follows:

C11 = (−1)1+1

∣∣∣∣∣∣∣
(k2 + δ2 + µ+ u2 − p2) 0

−u2 (δ3 + k3 + µ)

∣∣∣∣∣∣∣ = ∇2∇3

C12 = (−1)1+2

∣∣∣∣∣∣∣
−θ 0

−u1 (δ3 + k3 + µ)

∣∣∣∣∣∣∣ = θ∇3
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C13 = (−1)1+3

∣∣∣∣∣∣∣
−θ (k2 + δ2 + µ+ u2 − p2)

−u1 −u2

∣∣∣∣∣∣∣ = θu2 + u1∇2

C21 = (−1)2+1

∣∣∣∣∣∣∣
0 0

−u2 (δ3 + k3 + µ)

∣∣∣∣∣∣∣ = 0

C22 = (−1)2+2

∣∣∣∣∣∣∣
(k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ) 0

−u1 (δ3 + k3 + µ)

∣∣∣∣∣∣∣ = ∇1∇3

C23 = (−1)2+3

∣∣∣∣∣∣∣
(k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ) 0

−u1 −u2

∣∣∣∣∣∣∣ = u2∇1

C31 = (−1)3+1

∣∣∣∣∣∣∣
0 0

(k2 + δ2 + µ+ u2 − p2) 0

∣∣∣∣∣∣∣ = 0

C32 = (−1)3+2

∣∣∣∣∣∣∣
(k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ) 0

−θ 0

∣∣∣∣∣∣∣ = 0

C33 = (−1)3+3

∣∣∣∣∣∣∣
(k1 + θ + δ1 + µ+ u1 − p1 − (1− ε)φ) 0

−θ (k2 + δ2 + µ+ u2 − p2)

∣∣∣∣∣∣∣ = ∇1∇2

The matrix formed by the cofactors is

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33

 =


∇2∇3 θ∇3 θu2 + u1∇2

0 ∇1∇3 u2∇1

0 0 ∇1∇2



then adjV = CT =


∇2∇3 0 0

θ∇3 ∇1∇3 0

θu2 + u1∇2 u2∇1 ∇1∇2


Therefore

V −1 = 1
det(V )adj (V ) = 1

∇1∇2∇3


∇2∇3 0 0

θ∇3 ∇1∇3 0

θu2 + u1∇2 u2∇1 ∇1∇2



⇒ V −1 =


1
∇1

0 0
θ

∇1∇2
1
∇2

0
θu2+u1∇2
∇1∇2∇3

u2
∇2∇3

1
∇3



FV −1 =


A1 A2 A3

0 0 0

0 0 0




1
∇1

0 0
θ

∇1∇2
1
∇2

0
θu2+u1∇2
∇1∇2∇3

u2
∇2∇3

1
∇3
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where A1 = β1
Q1

Q1+Q2
+ σ, A2 = β2

Q1
Q1+Q2

+ σ and A3 = β3
Q1

Q1+Q2
+ σ then

FV −1 =


A1

1
∇1

+ A2
θ

∇1∇2
+ A3

θu2+u1∇2
∇1∇2∇3

A2
1
∇2

+ A3
u2
∇2∇3

A3
1
∇3

0 0 0

0 0 0


We find the eigenvalues of FV −1 by solving the characteristic equation |FV −1 − λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣∣
A1

1
∇1

+ A2
θ

∇1∇2
+ A3

θu2+u1∇2
∇1∇2∇3

− λ A2
1
∇2

+ A3
u2
∇2∇3

A3
1
∇3

0 −λ 0

0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (−λ)

∣∣∣∣∣∣∣
A1

1
∇1

+ A2
θ

∇1∇2
+ A3

θu2+u1∇2
∇1∇2∇3

− λ A2
1
∇2

+ A3
u2
∇2∇3

0 −λ

∣∣∣∣∣∣∣ = 0

⇒ (−λ) (−λ)
(
A1

1
∇1

+ A2
θ

∇1∇2
+ A3

θu2+u1∇2
∇1∇2∇3

− λ
)

= 0

⇒ λ2
(
A1

1
∇1

+ A2
θ

∇1∇2
+ A3

θu2+u1∇2
∇1∇2∇3

− λ
)

= 0

⇒ λ1,2 = 0 and λ3 = A1
1
∇1

+A2
θ

∇1∇2
+A3

θu2+u1∇2
∇1∇2∇3

thus the spectral radius of FV −1 is given by

R0 = max [λ1,2, λ3] = λ3

Therefore the basic reproduction number of the model is

R0 = A1
1
∇1

+ A2
θ

∇1∇2
+ A3

θu2 + u1∇2

∇1∇2∇3

From this we can observe that the contribution to the reproduction number by unaware infective

I1 is RI1
0 = A1

1
∇1

, the contribution to the reproduction number by aware infective I2 is

RI2
0 = A2

θ
∇1∇2

, and the contribution to the reproduction number by pre-AIDS individuals P is

RP
0 = A3

θu2+u1∇2
∇1∇2∇3

.

We now investigate the local stability of the disease free equilibrium point.

Local stability of the disease free equilibrium point E0

Theorem 5.3. The disease free equilibrium point E0 of the system of ordinary differential

equations (5.1)−(5.7) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Initially at t = 0, S1(0) > 0, S2(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0, P (0) ≥ 0, Sp(0) ≥ 0

this means initially there is no AIDS patient. Hence, we only consider the subsystem of six

equations (5.1 to 5.6). The Jacobian matrix associated with the subsystem equations at the
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disease free equilibrium point E0 = (Q1
µ
, Q2
µ
, 0, 0, 0, 0, 0) is given by:

J(E0) =



−µ 0 −(β1 + σ) Q1
Q1+Q2

−(β2 + σ) Q1
Q1+Q2

−(β3 + σ) Q1
Q1+Q2

0

0 −µ −σ Q2
Q1+Q2

−σ Q2
Q1+Q2

−σ Q2
Q1+Q2

0

0 0 A1 −∇1 A2 A3 0

0 0 θ −∇2 0 0

0 0 u1 u2 −∇3 0

0 0 k1 k2 k3 −µ


The characteristic equation |J (E0)− λI| = 0∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− λ 0 −(β1 + σ) Q1
Q1+Q2

−(β2 + σ) Q1
Q1+Q2

−(β3 + σ) Q1
Q1+Q2

0

0 −µ− λ −σ Q2
Q1+Q2

−σ Q2
Q1+Q2

−σ Q2
Q1+Q2

0

0 0 A1 −∇1 − λ A2 A3 0

0 0 θ −∇2 − λ 0 0

0 0 u1 u2 −∇3 − λ 0

0 0 k1 k2 k3 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

⇒ (µ+ λ)3

∣∣∣∣∣∣∣∣∣∣∣
A1 −∇1 − λ A2 A3

θ −∇2 − λ 0

u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (µ+ λ)3

−θ
∣∣∣∣∣∣∣
A2 A3

u2 −∇3 − λ

∣∣∣∣∣∣∣− (∇2 + λ)

∣∣∣∣∣∣∣
A1 −∇1 − λ A3

u1 −∇3 − λ

∣∣∣∣∣∣∣
 = 0

⇒ (µ+ λ)3 [θ (A2 (∇3 + λ) + u2A3) + (∇2 + λ) ((A1 −∇1 − λ) (∇3 + λ) + u1A3)] = 0

⇒ λ = −µ or [θ (A2 (∇3 + λ) + u2A3) + (∇2 + λ) ((A1 −∇1 − λ) (∇3 + λ) + u1A3)] = 0

⇒ θA2∇3 + θA2λ+ θu2A3 + (∇2 + λ) (∇3 + λ) (A1 −∇1 − λ) + (∇2 + λ)u1A3 = 0

⇒ θA2∇3 + θA2λ+ θu2A3 + (∇2∇3 + (∇2 +∇3)λ+ λ2) (A1 −∇1 − λ) +∇2u1A3 + λu1A3 = 0

⇒ θA2∇3 + θA2λ+ θu2A3 + A1∇2∇3 + A1 (∇2 +∇3)λ+ A1λ
2 −∇1∇2∇3 −∇1 (∇2 +∇2)λ

−∇1λ
2 − λ∇2∇3 − (∇2 +∇3)λ2 − λ3 +∇2u1A3 + λu1A3 = 0

⇒ λ3 + (∇1 +∇2 +∇3 − A1)λ2 + (∇1∇2 +∇1∇3 +∇2∇3 − θA2 − u1A3 − A1∇2 − A1∇3)λ

+ (∇1∇2∇3 − A1∇2∇3 −∇2u1A3 − θu2A3 − θA2∇3) = 0

Let B1 = (∇1 +∇2 +∇3 − A1)

B2 = (∇1∇2 +∇1∇3 +∇2∇3 − θA2 − u1A3 − A1∇2 − A1∇3)

B3 = (∇1∇2∇3 − A1∇2∇3 −∇2u1A3 − θu2A3 − θA2∇3)

Then the characteristics polynomial equation becomes

λ3 +B1λ
2 +B2λ+B3 = 0
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If we show that B1, B2 and B3 are positives, then the necessary condition of Routh wuritze

criteria satisfied.

Now

R0 = A1
1
∇1

+ A2
θ

∇1∇2
+ A3

θu2 + u1∇2

∇1∇2∇3
= A1∇2∇3 + A2θ∇3 + A3θu2 + A3u1∇2

∇1∇2∇3

For R0 < 1 we have
A1∇2∇3+A2θ∇3+A3θu2+A3u1∇2

∇1∇2∇3
< 1

⇒ A1∇2∇3
∇1∇2∇3

< 1 ⇒ A1
∇1

< 1

⇒ A1 < ∇1 ⇒ ∇1 − A1 > 0

⇒ B1 > 0 Since B1 = ∇1 +∇2 +∇3 − A1 = ∇2 +∇3 +∇1 − A1 where ∇2 > 0 and ∇3 > 0.

B2 = (∇1∇2 +∇1∇3 +∇2∇3 − θA2 − u1A3 − A1∇2 − A1∇3)

= ∇2 (∇1 − A1) +∇3 (∇1 − A1) +∇2∇3 − (θA2 + u1A3)

Thus B2 > 0 when ∇2∇3 > (θA2 + u1A3)

B3 = (∇1∇2∇3 − A1∇2∇3 −∇2u1A3 − θu2A3 − θA2∇3)

= ∇1∇2∇3
(
1− A1

∇1
− u1A3
∇1∇3

− θu2A3
∇1∇2∇3

− θA2
∇1∇2

)
= ∇1∇2∇3

(
1−

(
A1
∇1

+ u1A3
∇1∇3

+ θu2A3
∇1∇2∇3

+ θA2
∇1∇2

))
= ∇1∇2∇3 (1−R0)

If R0 < 1, then B3 > 0.

Thus all coefficients of the characteristic polynomial are positives for R0 < 1.

Now consider the following Routh array to determine the sufficient condition.

To see the sign of eigenvalues we use Routh – Hurwitz criteria.

Consider the following Routh – Hurwitz array
λ3 1 B2

λ2 B1 B3

λ1 B 0

λ0 C

where B = −1
B1

∣∣∣∣∣∣∣
1 B2

B1 B3

∣∣∣∣∣∣∣ and C = −1
B

∣∣∣∣∣∣∣
B1 B3

B 0

∣∣∣∣∣∣∣
Now

B = −1
B1

∣∣∣∣∣∣∣
1 B2

B1 B3

∣∣∣∣∣∣∣ = −1
B1

(B3 −B1B2)

= 1
B1

(B1B2 −B3)
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For B1B2 −B3 > 0⇒ B1B2 > B3 we have B > 0

C = −1
B

∣∣∣∣∣∣∣
B1 B3

B 0

∣∣∣∣∣∣∣ = −1
B

(0−BB3)

= BB3

B
= B3 > 0

⇒ C > 0

Since all elements of the first column of the array have the same sign then by Routh – Hurwitz

criteria all roots of the characteristic equation have negative real part, thus the disease free

equilibrium point is locally asymptotically stable.

Global stability of disease-free equilibrium point

Theorem 5.4. The disease free equilibrium point E0 is globally asymptotically stable if R0 < 1.

Proof. Let us construct a Lyapunov function

V = α1I1 + α2I2 + α3P + α4Sp + α5A

where αi, i = 1, 2, 3, 4, 5 are positive constants to be determined. The time derivative of V is

given by
dV
dt

= α1
dI1
dt

+ α2
dI2
dt

+ α3
dP
dt

+ α4
dSp
dt

+ α5
dA
dt

= α1
(
[β1I1 + β2I2 + β3P ] S1

N
+ σ [I1 + I2 + P ] S1

N
+ σ [I1 + I2 + P ] S2

N
−∇1I1

)
+α2 (p2I2 + θI1 − (k2 + δ2 + µ+ u2) I2) + α3 (u1I1 + u2I2 − (δ3 + k3 + µ)P )

+α4 (k1I1 + k2I2 + k3P − µSp) + α5 (δ1I1 + δ2I2 + δ3P − (α + µ)A)

= α1
(
(β1 + σ) S1

N
+ σ S2

N
−∇1

)
I1 + α1

(
(β2 + σ) S1

N
+ σ S2

N

)
I2 + α1

(
(β3 + σ) S1

N
+ σ S2

N

)
P

+α2 (p2 − (k2 + δ2 + µ+ u2)) I2 + α2θI1 + α3u1I1 + α3u2I2 − α3 (δ3 + k3 + µ)P

+α4k1I1 + α4k2I2 − α4µSp + α5δ1I1 + α5δ2I2 + α5δ3P − α5 (α + µ)A

= α1
(
(β1 + σ) S1

N
+ σ S2

N
−∇1

)
I1 + α2θI1 + α3u1I1 + α4k1I1 + α5δ1I1

+α1
(
(β2 + σ) S1

N
+ σ S2

N

)
I2 + α2 (p2 − (k2 + δ2 + µ+ u2)) I2 + α3u2I2 + α4k2I2

+α5δ2I2+α1
(
(β3 + σ) S1

N
+ σ S2

N

)
P−α3 (δ3 + k3 + µ)P+α5δ3P−α4µSp−α5 (α + µ)A

=
[
α1
(
(β1 + σ) S1

N
+ σ S2

N
−∇1

)
+ α2θ + α3u1 + α4k1 + α5δ1

]
I1

+
[
α1
(
(β2 + σ) S1

N
+ σ S2

N

)
+ α2 (p2 − (k2 + δ2 + µ+ u2)) + α3u2 + α4k2 + α5δ2

]
I2

+
[
α1
(
(β3 + σ) S1

N
+ σ S2

N

)
− α3 (δ3 + k3 + µ) + α5δ3

]
P − α4µSp − α5 (α + µ)A

≤ [α1 (A1 −∇1) + α2θ + α3u1 + α4k1 + α5δ1] I1
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+ [α1A2 + α2 (p2 − (k2 + δ2 + µ+ u2)) + α3u2 + α4k2 + α5δ2] I2

+ [α1A3 − α3 (δ3 + k3 + µ) + α5δ3]P − α4µSp − α5 (α + µ)A

Take the coefficients of I2, P, Sp and A are equal to zero. Then we get

−α5 (α + µ)A = 0⇒ α5 = 0

−α4µSp = 0⇒ α4 = 0

α1A3 − α3 (δ3 + k3 + µ) + α5δ3 = 0⇒ α1A3 − α3 (δ3 + k3 + µ) = 0

⇒ α1A3 = α3 (δ3 + k3 + µ)

⇒ α3 = α1A3

(δ3 + k3 + µ) = α1A3

∇3

α1A2 + α2 (p2 − (k2 + δ2 + µ+ u2)) + α3u2 + α4k2 + α5δ2 = 0

⇒ α1A2 + α2 (p2 − (k2 + δ2 + µ+ u2)) + α3u2 = 0

⇒ α1A2 + α2 (p2 − (k2 + δ2 + µ+ u2)) + α1A3

∇3
u2 = 0

⇒ α1A2∇3 + α1A3u2

∇3
− α2∇2 = 0

⇒ α1A2∇3 + α1A3u2

∇3
= α2∇2

⇒ α2 = α1 [A2∇3 + A3u2]
∇2∇3

Then
dV

dt
≤ [α1(A1 −∇1) + α2θ + α3u1 + α4k1 + α5δ1]I1

⇒ dV

dt
≤
[
α1 (A1 −∇1) + α1 [A2∇3 + A3u2]

∇2∇3
θ + α1A3

∇3
u1

]
I1

⇒ dV

dt
≤
[
α1 (A1 −∇1) + α1 [A2∇3 + A3u2] θ + α1A3u1∇2

∇2∇3

]
I1

⇒ dV

dt
≤
[
α1A1 + α1 [A2∇3 + A3u2] θ + α1A3u1∇2

∇2∇3
− α1∇1

]
I1

⇒ dV

dt
≤
[
α1∇1

(
A1∇2∇3 + [A2∇3 + A3u2] θ + A3u1∇2

∇1∇2∇3
− 1

)]
I1

⇒ dV

dt
≤ [α1(A1 −∇1) + α2θ + α3u1]I1

⇒ dV

dt
≤ [α1∇1

(A1∇2∇3 + A2θ∇3 + A3[u1∇2 + θu2])
∇1∇2∇3

− 1]I1

⇒ dV

dt
≤ [α1∇1(R0 − 1)]I1

We note that dV
dt
≤ 0 if R0 < 1. Furthermore, dV

dt
= 0 if and only if I1 = I2 = P = Sp = A = 0.

Therefore, the largest compact invariant set in {(S1, S2, I1, I2, P, Sp, A) ∈ Ω : dV
dt

= 0}, where

R0 < 1 is the singleton {E0}. LaSalle’s (1976) invariance principle then implies that E0 is

globally stable in Ω if R0 < 1 otherwise it is unstable.

82



5.3.2 Endemic Equilibrium Point

Similarly here we also consider the system equations (5.1) − (5.7). At the endemic equilibrium

point E∗ the disease persists or exists. It is given by E∗ = (S∗1 , S∗2 , I∗1 , I∗2 , P ∗, S∗p , A∗). We set

each right hand side in system equations to zero and express I∗2 , P ∗, S∗p , A∗ in terms of I∗1 .

dS1

dt
= Q1 − [β1I1 + β2I2 + β3P ]S1

N
− [I1 + I2 + P ]σS1

N
− µS1 = 0

dS2

dt
= Q2 − [I1 + I2 + P ]σS2

N
− µS2 = 0

dI1

dt
= [β1I1 + β2I2 + β3P ]S1

N
+ [I1 + I2 + P ]σS1

N
+ [I1 + I2 + P ]σS2

N
+ p1I1

+ (1− ε)I1φ− (k1 + θ + δ1 + µ+ u1)I1 = 0
dI2

dt
= p2I2 + I1θ − (k2 + δ2 + µ+ u2)I2 = 0

dP

dt
= u1I1 + u2I2 − (δ3 + k3 + µ)P = 0

dSp
dt

= k1I1 + k2I2 + k3P − µSp = 0
dA

dt
= δ1I1 + δ2I2 + δ3P − (α + µ)A = 0

Take the following force of infections at endemic equilibrium point

Λ∗1 = (β1 + σ) I1
∗ + (β2 + σ) I2

∗ + (β3 + σ)P ∗
N∗

(5.9)

Λ∗2 = σ (I1
∗ + I2

∗ + P ∗)
N∗

(5.10)

From equation (5.4) we have

I2
∗ = θI1

∗

∇2
= ω1I1

∗ (5.11)

From equation (5.5) we have

P ∗ = u1I1
∗ + u2I2

∗

∇3
=
u1I1

∗ + u2
θI1∗

∇2

∇3
=
(
u1∇2 + u2θ

∇2∇3

)
I1
∗ = ω2I1

∗ (5.12)

From equation (5.6) we have

S∗p = k1I1
∗ + k2I2

∗ + k3P
∗

µ
= k1I1

∗ + k2ω1I1
∗ + k3ω2I1

∗

µ
= ω3I1

∗ (5.13)

From equation (5.7) we have

A∗ = δ1I1
∗ + δ2I2

∗ + δ3P
∗

(α+ µ) = δ1I1
∗ + δ2ω1I1

∗ + δ3ω2I1
∗

(α+ µ) = ω4I1
∗ (5.14)
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where ω1 = θ
∇2

, ω2 =
(
u1∇2+u2θ
∇2∇3

)
, ω3 =

(
k1+k2ω1+k3ω2

µ

)
and ω4 =

(
δ1+δ2ω1+δ3ω2

α+µ

)
From equation (5.9) we have

Λ∗1 = (β1 + σ) I1
∗ + (β2 + σ) I2

∗ + (β3 + σ)P ∗
N∗

= (β1 + σ) I1
∗ + (β2 + σ)ω1I1

∗ + (β3 + σ)ω2I1
∗

N∗
= Φ1I1

∗

N∗
(5.15)

where Φ1 = (β1 + σ) + (β2 + σ)ω1 + (β3 + σ)ω2

From equation (5.10) we have

Λ∗2 = σ (I1
∗ + I2

∗ + P ∗)
N∗

= σ (I1
∗ + ω1I1

∗ + ω2I1
∗)

N∗
= Φ2I1

∗

N∗
(5.16)

where Φ2 = σ (1 + ω1 + ω2)

From equation (5.3) we have

Λ∗1S∗1 + Λ∗2S∗2 −∇1I1
∗ = 0 (5.17)

From equation (5.1) we have

Q1 − Λ∗1S∗1 − µS∗1 = 0⇒ S∗1 = Q1

Λ∗1 + µ
(5.18)

From equation (5.2) we have

Q2 − Λ∗2S∗2 − µS∗2 = 0⇒ S∗2 = Q2

Λ∗2 + µ
(5.19)

Substituting equations (5.15), (5.16), (5.18) and (5.19) in to equation (5.17) we get

Λ∗1S∗1 + Λ∗2S∗2 −∇1I1
∗ = 0

⇒ Λ∗1
(

Q1
Λ∗1+µ

)
+ Λ∗2

(
Q2

Λ∗2+µ

)
−∇1I1

∗ = 0

⇒ Λ∗1Q1 (Λ∗2 + µ) + Λ∗2Q2 (Λ∗1 + µ)−∇1 (Λ∗1 + µ) (Λ∗2 + µ) I1
∗ = 0

⇒ Λ∗1Λ∗2Q1 + Λ∗1µQ1 + Λ∗1Λ∗2Q2 + Λ∗2µQ2 −∇1 (Λ∗1Λ∗2 + Λ∗1µ+ Λ∗2µ+ µ2) I1
∗ = 0

⇒ Λ∗1Λ∗2 (Q1 +Q2) + Λ∗1µQ1 + Λ∗2µQ2 −∇1Λ∗1Λ∗2I1
∗ −∇1Λ∗1µI1

∗ −∇1Λ∗2µI1
∗ −∇1µ

2I1
∗ = 0

⇒ Λ∗1Λ∗2 (Q1 +Q2)− Λ∗1Λ∗2∇1I1
∗ + Λ∗1µQ1 − Λ∗1∇1µI1

∗ + Λ∗2µQ2 − Λ∗2∇1µI1
∗ −∇1µ

2I1
∗ = 0

⇒ Λ∗1Λ∗2 (Q1 +Q2 −∇1I1
∗) + Λ∗1 (µQ1 −∇1µI1

∗) + Λ∗2 (µQ2 −∇1µI1
∗)−∇1µ

2I1
∗ = 0

⇒ Φ1Φ2I1∗
2

N∗2
(Q1 +Q2 −∇1I1

∗) + Φ1I1∗

N∗
(µQ1 −∇1µI1

∗) + Φ2I1∗

N∗
(µQ2 −∇1µI1

∗)−∇1µ
2I1
∗ = 0

⇒ Φ1Φ2I1
∗2 (Q1 +Q2 −∇1I1

∗) + Φ1I1
∗N∗ (µQ1 −∇1µI1

∗) + Φ2I1
∗N∗ (µQ2 −∇1µI1

∗)

−N∗2∇1µ
2I1
∗ = 0

⇒ I1
∗[Φ1Φ2I1

∗ (Q1 +Q2 −∇1I1
∗) + Φ1N

∗ (µQ1 −∇1µI1
∗) + Φ2N

∗ (µQ2 −∇1µI1
∗)

−N∗2∇1µ
2] = 0

⇒ I1
∗ = 0 which is DFE or[

Φ1Φ2I1
∗ (Q1 +Q2 −∇1I1

∗) + Φ1N
∗ (µQ1 −∇1µI1

∗) + Φ2N
∗ (µQ2 −∇1µI1

∗)−N∗2∇1µ
2
]

= 0
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⇒ Φ1Φ2I1
∗ (Q1 +Q2 −∇1I1

∗) + Φ1
(Q1+Q2)

µ
(µQ1 −∇1µI1

∗) + Φ2
(Q1+Q2)

µ
(µQ2 −∇1µI1

∗)

− (Q1+Q2)
µ2

2
∇1µ

2 = 0

⇒ Φ1Φ2I1
∗ (Q1 +Q2 −∇1I1

∗) + Φ1 (Q1 +Q2)Q1 − Φ1 (Q1 +Q2)∇1I1
∗ + Φ2 (Q1 +Q2)Q2

−Φ2 (Q1 +Q2)∇1I1
∗ − (Q1 +Q2)2∇1 = 0

⇒ Φ1Φ2 (Q1 +Q2) I1
∗−Φ1Φ2∇1I1

∗2 +Φ1 (Q1 +Q2)Q1−Φ1 (Q1 +Q2)∇1I1
∗+Φ2 (Q1 +Q2)Q2

−Φ2 (Q1 +Q2)∇1I1
∗ − (Q1 +Q2)2∇1 = 0

⇒ Φ1Φ2∇1I1
∗2−Φ1Φ2 (Q1 +Q2) I1

∗−Φ1 (Q1 +Q2)Q1 +Φ1 (Q1 +Q2)∇1I1
∗−Φ2 (Q1 +Q2)Q2

+Φ2 (Q1 +Q2)∇1I1
∗ + (Q1 +Q2)2∇1 = 0

⇒ Φ1Φ2∇1I1
∗2 + (Φ1 (Q1 +Q2)∇1 + Φ2 (Q1 +Q2)∇1 − Φ1Φ2 (Q1 +Q2)) I1

∗

+ (Q1 +Q2) (−Φ1Q1 − Φ2Q2 + (Q1 +Q2)∇1) = 0

⇒ AI1
∗2 +BI1

∗ + C = 0

where A = Φ1Φ2∇1

B = (Q1 +Q2) (Φ1∇1 + Φ2∇1 − Φ1Φ2)

C = (Q1 +Q2) (∇1 (Q1 +Q2)− (Φ1Q1 + Φ2Q2))

But C = (Q1 +Q2) (∇1 (Q1 +Q2)− (Φ1Q1 + Φ2Q2)) can be more simplified as follows

(Q1 +Q2) (∇1 (Q1 +Q2)− (Φ1Q1 + Φ2Q2))

= ∇1(Q1 +Q2)2
(

1− (Φ1Q1 + Φ2Q2)
∇1 (Q1 +Q2)

)

= ∇1(Q1 +Q2)2
(

1−
[

Φ1Q1

∇1 (Q1 +Q2) + Φ2Q2

∇1 (Q1 +Q2)

])

= ∇1(Q1 +Q2)2
(

1−
[

(β1 + β2ω1 + β3ω2)Q1

∇1 (Q1 +Q2) + Φ1Q1 + Φ2Q2

∇1 (Q1 +Q2)

])

= ∇1(Q1 +Q2)2
(

1−
[

(β1 + β2ω1 + β3ω2)Q1

∇1 (Q1 +Q2) + Φ2

∇1

])

= ∇1(Q1 +Q2)2 (1−R0)

Thus I1
∗ = −B±

√
B2−4AC
2A

= −(Q1+Q2)(Φ1∇1+Φ2∇1−Φ1Φ2)±
√

((Q1+Q2)(Φ1∇1+Φ2∇1−Φ1Φ2))2−4Φ1Φ2∇1∇1(Q1+Q2)2(1−R0)
2Φ1Φ2∇1

Here we have the following cases.

Case i) for R0 > 1 we have C < 0 in this case the quadratic equation AI1
∗2 + BI1

∗ + C = 0

has two roots with opposite sign. The negative root is biologically meaningless, hence the

uniqueness of the endemic equilibrium.

Case ii) for R0 > 1 and Φ1∇1 + Φ2∇1−Φ1Φ2 < 0 the quadratic equation AI1
∗2 +BI1

∗+C = 0

has two endemic equilibriums.

Case iii) for R0 < 1 and Φ1∇1 +Φ2∇1−Φ1Φ2 < 0 the quadratic equation AI1
∗2 +BI1

∗+C = 0

has two endemic equilibriums. Case iv) for R0 = 1 the model has two equilibriums, namely,
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the disease-free equilibrium point and the endemic equilibrium point, coexisting.

Thus we get the endemic equilibrium point

E∗ = (S∗1 , S∗2 , I∗1 , I∗2 , P ∗, S∗p , A∗) where

I∗1 = −(Q1 +Q2)(Φ1∇1 + Φ2∇1 − Φ1Φ2)
2Φ1Φ2∇1

±

√
((Q1 +Q2)(Φ1∇1 + Φ2∇1 − Φ1Φ2))2 − 4Φ1Φ2∇2

1(Q1 +Q2)2(1−R0)
2Φ1Φ2∇1

S∗1 = Q1

( (Φ1I∗1 )
N∗

+ µ)
, S∗2 = Q2

( (Φ2I∗1 )
N∗

+ µ)
, I∗2 = θ

∇2
I∗1 , P

∗ = (u1∇2 + u2θ)
∇2∇3

I∗1 ,

S∗p =
k1 + k2

θ
∇2

+ k3
(u1∇2+u2θ)
∇2∇3

µ
I∗1 and A∗ =

δ1 + δ2
θ
∇2

+ δ3
(u1∇2+u2θ)
∇2∇3

(α + µ) I∗1

Φ1 = (β1 + σ) + (β2 + σ) θ
∇2

+ (β3 + σ)(u1∇2 + u2θ)
∇2∇3

,Φ2 = σ(1 + θ

∇2
+ u1∇2 + u2θ)

∇2∇3
)

Local stability of endemic equilibrium point

We now investigate the local stability of the endemic equilibrium point E∗.

Theorem 5.5. The positive endemic equilibrium point E∗ of the system of equations (5.1) −

(5.7) is locally asymptotically stable if R0 > 1.

Proof. the linearization of the Jacobian matrix of the system of equations (5.1) − (5.7) at any

point is

J (E) =



M11 0 M13 M14 M15 0 0

0 M22 M23 M24 M25 0 0

Λ1 Λ2 M33 −∇1 M34 M35 0 0

0 0 θ −∇2 0 0 0

0 0 u1 u2 −∇3 0 0

0 0 k1 k2 k3 −µ 0

0 0 δ1 δ2 δ3 0 − (α + µ)


where M11 = − (Λ1 + µ) , M13 = −

(
β1+σ
N

)
S1, M14 = −

(
β2+σ
N

)
S1, M15 = −

(
β3+σ
N

)
S1

M22 = − (Λ2 + µ) , M23 = −σ S2
N
, M24 = −σ S2

N
, M25 = −σ S2

N
,

M33 =
(
β1+σ
N

)
S1 + σ S2

N
, M34 =

(
β2+σ
N

)
S1 + σ S2

N
, M35 =

(
β3+σ
N

)
S1 + σ S2

N
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At the endemic equilibrium point the above Jacobian matrix becomes

J(E∗) =



M∗
11 0 M∗

13 M∗
14 M∗

15 0 0

0 M∗
22 M∗

23 M∗
24 M∗

25 0 0

Λ∗1 Λ∗2 M∗
33 −∇1 M∗

34 M∗
35 0 0

0 0 θ −∇2 0 0 0

0 0 u1 u2 −∇3 0 0

0 0 k1 k2 k3 −µ 0

0 0 δ1 δ2 δ3 0 −(α + µ))


where M∗

11 = −(Λ∗1 + µ),M∗
13 = −(β1+σ

N∗
)S∗1 ,M∗

14 = −(β2+σ
N∗

)S∗1 ,M∗
15 = −(β3+σ

N∗
)S∗1

M∗
22 = −(Λ2 + µ),M∗

23 = −σ S∗2
N∗
,M∗

24 = −σ S∗2
N∗
,M∗

25 = −σ S∗2
N∗
,

M∗
33 = (β1+σ

N∗
)S∗1 + σ

S∗2
N∗
,M∗

34 = (β2+σ)
N∗

)S∗1 + σ
S∗2
N∗
,M∗

35 = (β3+σ
N∗

)S∗1 + σ
S∗2
N∗

The corresponding characteristic equation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗
11 − λ 0 M∗

13 M∗
14 M∗

15 0 0

0 M∗
22 − λ M∗

23 M∗
24 M∗

25 0 0

Λ∗1 Λ∗2 M∗
33 −∇1 − λ M∗

34 M∗
35 0 0

0 0 θ −∇2 − λ 0 0 0

0 0 u1 u2 −∇3 − λ 0 0

0 0 k1 k2 k3 −µ− λ 0

0 0 δ1 δ2 δ3 0 −(α + µ)− λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

⇒ ((α + µ) + λ) (µ+ λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗
11 − λ 0 M∗

13 M∗
14 M∗

15

0 M∗
22 − λ M∗

23 M∗
24 M∗

25

Λ∗1 Λ∗2 M∗
33 − (∇1 + λ) M∗

34 M35∗

0 0 θ −∇2 − λ 0

0 0 u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ λ = − (α + µ) orλ = −µ or∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗
11 − λ 0 M∗

13 M∗
14 M∗

15

0 M∗
22 − λ M∗

23 M∗
24 M∗

25

Λ∗1 Λ∗2 M∗
33 − (∇1 + λ) M∗

34 M∗
35

0 0 θ −∇2 − λ 0

0 0 u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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⇒ (M∗
11 − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M∗
22 − λ M∗

23 M∗
24 M∗

25

Λ∗2 M∗
33 − (∇1 + λ) M∗

34 M∗
35

0 θ −∇2 − λ 0

0 u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+Λ∗1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 M∗
13 M∗

14 M∗
15

M∗
22 − λ M∗

23 M∗
24 M∗

25

0 θ −∇2 − λ 0

0 u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (M∗
11 − λ) (M∗

22 − λ)

∣∣∣∣∣∣∣∣∣∣∣
M∗

33 − (∇1 + λ) M∗
34 M∗

35

θ −∇2 − λ 0

u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣
−Λ∗2 (M∗

11 − λ)

∣∣∣∣∣∣∣∣∣∣∣
M∗

23 M∗
24 M∗

25

θ −∇2 − λ 0

u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣
− Λ∗1 (M∗

22 − λ)

∣∣∣∣∣∣∣∣∣∣∣
M∗

13 M∗
14 M∗

15

θ −∇2 − λ 0

u1 u2 −∇3 − λ

∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (M∗
11 − λ) (M∗

22 − λ)

M∗
35

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣− (∇3 + λ)

∣∣∣∣∣∣∣
M∗

33 − (∇1 + λ) M∗
34

θ −∇2 − λ

∣∣∣∣∣∣∣


−Λ∗2 (M∗
11 − λ)

M∗
25

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣− (∇3 + λ)

∣∣∣∣∣∣∣
M∗

23 M∗
24

θ −∇2 − λ

∣∣∣∣∣∣∣


−Λ∗1 (M∗
22 − λ)

M15∗

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣− (∇3 + λ)

∣∣∣∣∣∣∣
M∗

13 M∗
14

θ −∇2 − λ

∣∣∣∣∣∣∣
 = 0

⇒ (M∗
11 − λ) (M∗

22 − λ)M∗
35

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣
− (M∗

11 − λ) (M∗
22 − λ) (∇3 + λ)

∣∣∣∣∣∣∣
M∗

33 − (∇1 + λ) M∗
34

θ −∇2 − λ

∣∣∣∣∣∣∣
−Λ∗2 (M∗

11 − λ)M∗
25

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣+ Λ∗2 (M∗
11 − λ) (∇3 + λ)

∣∣∣∣∣∣∣
M∗

23 M∗
24

θ −∇2 − λ

∣∣∣∣∣∣∣
−Λ∗1 (M∗

22 − λ)M∗
15

∣∣∣∣∣∣∣
θ −∇2 − λ

u1 u2

∣∣∣∣∣∣∣+ Λ∗1 (M∗
22 − λ) (∇3 + λ)

∣∣∣∣∣∣∣
M∗

13 M∗
14

θ −∇2 − λ

∣∣∣∣∣∣∣ = 0

⇒ [(M∗
11 − λ) (M∗

22 − λ) [M∗
35 (θu2 + u1 (∇2 + λ)) + (M∗

33 − (∇1 + λ) (∇2 + λ) + θM∗
34) (∇3 + λ)]

−Λ∗2 (M11 − λ) [M25 (θu2 + u1 (∇2 + λ)) + (M23 (∇2 + λ) + θM24) (∇3 + λ)]

−Λ∗1 (M∗
22 − λ) [M∗

15 (θu2 + u1 (∇2 + λ)) + (M∗
13 (∇2 + λ) + θM∗

14) (∇3 + λ)] = 0

⇒ (M∗
11 − λ) (M∗

22 − λ) [M∗
35θu2 +M∗

35u1∇2 +M∗
35u1λ]

+ (M∗
11 − λ) (M∗

22 − λ) (M∗
33∇2 +M∗

33λ−∇1∇2 − (∇1 +∇2)λ− λ2 + θM∗
34) (∇3 + λ)
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−Λ∗2 (M∗
11 − λ) [M∗

25θu2 +M∗
25u1∇2 +M∗

25u1λ+ (M∗
23∇2 +M∗

23λ+ θM∗
24) (∇3 + λ)]

−Λ∗1 (M∗
22 − λ) [M∗

15θu2 +M∗
15u1∇2 +M∗

15u1λ+ (M∗
13∇2 +M∗

13λ+ θM∗
14) (∇3 + λ)] = 0

⇒ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) [M∗

35 (θu2 + u1∇2) +M∗
35u1λ+M∗

33∇2∇3 +M∗
33∇3λ]

+ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) [−∇1∇2∇3 −∇2∇3λ−∇1∇3λ−∇3λ

2 + θM∗
34∇3]

+ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) [M∗

33∇2λ+M∗
33λ

2 −∇1∇2λ−∇2λ
2 −∇1λ

2]

+ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) [−λ3 + θM∗

34λ]

−Λ∗2 (M∗
11 − λ) [M∗

25 (θu2 + u1∇2) +M∗
23∇2∇3 +M∗

25u1λ+M∗
23∇3λ+M∗

23∇2λ+ θM∗
24∇3]

−Λ∗2 (M∗
11 − λ) [M∗

23λ
2 + θM∗

24λ]− Λ∗1 (M∗
22 − λ) [M∗

15 (θu2 + u1∇2) +M∗
13∇2∇3]

−Λ∗1 (M∗
22 − λ) [M∗

15u1λ+M∗
13∇3λ+M∗

13∇2λ+ θM∗
14∇3 +M∗

13λ
2 + θM∗

14λ] = 0

⇒ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) [−λ3 + (M∗

33 −∇1 −∇2 −∇3)λ2 + (M∗
35u1 +M∗

33∇3

+M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)λ+M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3

−∇1∇2∇3 + θM∗
34∇3] −Λ∗2 (M∗

11 − λ) [M23λ
2 + (M25u1 +M23∇3 +M∗

23∇2 + θM∗
24)λ]

−Λ∗2 (M∗
11 − λ) [M∗

25 (θu2 + u1∇2) +M∗
23∇2∇3 + θM∗

24∇3]−Λ∗1 (M∗
22 − λ) [M∗

13λ
2 + (M∗

15u1

−Λ∗1 (M∗
22 − λ) [M∗

13∇3 +M∗
13∇2 + θM∗

14)λ+M∗
15 (θu2 + u1∇2) +M∗

13∇2∇3 + θM∗
14∇3] = 0

⇒ −λ3 (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) + (M∗

11M
∗
22 − (M∗

11 +M∗
22)λ+ λ2) (M∗

33 −∇1 −∇2

−∇3)λ2 + (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) (M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34

−∇2∇3 −∇1∇3 −∇1∇2)λ+ (M∗
11M

∗
22 − (M∗

11 +M∗
22)λ+ λ2) (M∗

35 (θu2 + u1∇2)

+M∗
33∇2∇3 −∇1∇2∇3 + θM∗

34∇3)− Λ∗2 (M∗
11 − λ)M∗

23λ
2 − Λ∗2 (M∗

11 − λ) (M∗
25u1

+M∗
23∇3 +M∗

23∇2 + θM∗
24)λ− Λ∗2 (M∗

11 − λ)M∗
25 (θu2 + u1∇2)− Λ∗2 (M∗

11 − λ) (M∗
23∇2∇3

−Λ∗2 (M∗
11 − λ) θM∗

24∇3 − Λ∗1 (M∗
22 − λ)M∗

13λ
2 − Λ∗1 (M∗

22 − λ) (M∗
15u1 +M∗

13∇3

−Λ∗1 (M∗
22 − λ) (M∗

13∇2 + θM∗
14)λ− Λ∗1 (M∗

22 − λ)M∗
15 (θu2 + u1∇2)

−Λ∗1 (M∗
22 − λ) (M∗

13∇2∇3 + θM∗
14∇3) = 0

⇒ −λ3M∗
11M

∗
22 + (M∗

11 +M∗
22)λ4 − λ5 +M∗

11M
∗
22 (M∗

33 −∇1 −∇2 −∇3)λ2

− (M∗
11 +M∗

22) (M∗
33 −∇1 −∇2 −∇3)λ3 + (M∗

33 −∇1 −∇2 −∇3)λ4

+M∗
11M

∗
22(M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34 −∇2∇3 −∇1∇3 −∇1∇2)λ

− (M∗
11 +M∗

22) (M∗
35u1 +M∗

33∇3 +M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)λ2

+ (M∗
35u1 +M∗

33∇3 +M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)λ3

+M∗
11M

∗
22 (M∗

35 (θu2 + u1∇2) +M∗
33∇2∇3 −∇1∇2∇3 + θM∗

34∇3)

− (M∗
11 +M∗

22) (M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3)λ

+ (M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3)λ2 − Λ∗2M∗

11M
∗
23λ

2

+Λ∗2M∗
23λ

3 − Λ∗2M∗
11 (M∗

25u1 +M∗
23∇3 +M∗

23∇2 + θM∗
24)λ+ Λ∗2(M∗

25u1 +M∗
23∇3

+M∗
23∇2 + θM∗

24)λ2 − Λ∗2M∗
11M

∗
25 (θu2 + u1∇2) + Λ∗2M∗

25 (θu2 + u1∇2)λ

−Λ∗2M∗
11 (M∗

23∇2∇3 + θM∗
24∇3) + Λ∗2 (M∗

23∇2∇3 + θM∗
24∇3)λ− Λ∗1M∗

22M
∗
13λ

2

+Λ∗1M∗
13λ

3 − Λ∗1M∗
22 (M∗

15u1 +M∗
13∇3 +M∗

13∇2 + θM∗
14)λ+ Λ∗1(M∗

15u1 +M∗
13∇3
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+M∗
13∇2 + θM∗

14)λ2 − Λ∗1M∗
22M

∗
15 (θu2 + u1∇2) + Λ∗1M∗

15 (θu2 + u1∇2)λ

−Λ∗1M∗
22 (M∗

13∇2∇3 + θM∗
14∇3) + Λ∗1 (M∗

13∇2∇3 + θM∗
14∇3)λ = 0

⇒ −λ5 + (M∗
11 +M∗

22 +M∗
33 −∇1 −∇2 −∇3)λ4 + [−M∗

11M
∗
22

− (M∗
11 +M∗

22) (M∗
33 −∇1 −∇2 −∇3) + Λ∗2M∗

23 + Λ∗1M∗
13 + (M∗

35u1 +M∗
33∇3

+M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2) ]λ3+[M∗
11M

∗
22 (M∗

33 −∇1 −∇2 −∇3)

− (M∗
11 +M∗

22) (M∗
35u1 +M∗

33∇3 +M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)

+M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3 − Λ∗2M∗

11M
∗
23 + Λ∗2(M∗

25u1

+M∗
23∇3 +M∗

23∇2 + θM∗
24)− Λ∗1M∗

22M
∗
13 + Λ∗1(M∗

15u1 +M∗
13∇3 +M∗

13∇2

+θM∗
14) ]λ2+[M∗

11M
∗
22(M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34 −∇2∇3 −∇1∇3

−∇1∇2)− (M∗
11 +M∗

22) (M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3)

−Λ∗2M∗
11 (M∗

25u1 +M∗
23∇3 +M∗

23∇2 + θM∗
24) + Λ∗2M∗

25 (θu2 + u1∇2)

+Λ∗2 (M∗
23∇2∇3 + θM∗

24∇3)− Λ∗1M∗
22 (M∗

15u1 +M∗
13∇3 +M∗

13∇2 + θM∗
14)

+Λ∗1M∗
15 (θu2 + u1∇2) + Λ∗1 (M∗

13∇2∇3 + θM∗
14∇3)]λ

+[−M∗
11M

∗
22 (M∗

35 (θu2 + u1∇2) +M∗
33∇2∇3 −∇1∇2∇3 + θM∗

34∇3)

+Λ∗2M∗
11M

∗
25 (θu2 + u1∇2) + Λ∗2M∗

11 (M∗
23∇2∇3 + θM∗

24∇3)

+Λ∗1M∗
22M

∗
15 (θu2 + u1∇2) + Λ∗1M∗

22 (M∗
13∇2∇3 + θM∗

14∇3)] = 0

⇒ λ5 + (∇1 +∇2 +∇3 −M∗
11 −M∗

22 −M∗
33)λ4 + [M∗

11M
∗
22

+ (M∗
11 +M∗

22) (M∗
33 −∇1 −∇2 −∇3)− Λ∗2M∗

23 − Λ∗1M∗
13 − (M∗

35u1 +M∗
33∇3

+M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2) ]λ3+[−M∗
11M

∗
22 (M∗

33 −∇1 −∇2 −∇3)

+ (M∗
11 +M∗

22) (M∗
35u1 +M∗

33∇3 +M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)

−M∗
35 (θu2 + u1∇2)−M∗

33∇2∇3 +∇1∇2∇3 − θM∗
34∇3 + Λ∗2M∗

11M
∗
23 − Λ∗2(M∗

25u1

+M∗
23∇3 +M∗

23∇2 + θM∗
24) + Λ∗1M∗

22M
∗
13 − Λ∗1 (M∗

15u1 +M∗
13∇3 +M∗

13∇2 + θM∗
14)]λ2

+ [−M∗
11M

∗
22(M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34 −∇2∇3 −∇1∇3 −∇1∇2)

+ (M∗
11 +M∗

22) (M∗
35 (θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3) + Λ∗2M∗

11(M∗
25u1

+M∗
23∇3 +M∗

23∇2 + θM∗
24)− Λ∗2M∗

25 (θu2 + u1∇2)− Λ∗2 (M∗
23∇2∇3 + θM∗

24∇3)

+Λ∗1M∗
22 (M∗

15u1 +M∗
13∇3 +M∗

13∇2 + θM∗
14)− Λ∗1M∗

15 (θu2 + u1∇2)− Λ∗1(M∗
13∇2∇3

+θM∗
14∇3) ]λ+[−M∗

11M
∗
22 (M∗

35 (θu2 + u1∇2) +M∗
33∇2∇3 −∇1∇2∇3 + θM∗

34∇3)

+Λ∗2M∗
11M

∗
25 (θu2 + u1∇2) + Λ∗2M∗

11 (M∗
23∇2∇3 + θM∗

24∇3)

+Λ∗1M∗
22M

∗
15 (θu2 + u1∇2) + Λ∗1M∗

22 (M∗
13∇2∇3 + θM∗

14∇3)] = 0

Then the above characteristic equation is given by

P (λ) = λ5 + a1λ
4 + a2λ

3 + a3λ
2 + a4λ+ a5 = 0

Where

a1 = (∇1 +∇2 +∇3 −M∗
11 −M∗

22 −M∗
33)
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a2 = [M∗
11M

∗
22 + (M∗

11 +M∗
22) (M∗

33 −∇1 −∇2 −∇3) − Λ∗2M∗
23 − Λ∗1M∗

13 − (M∗
35u1 + M∗

33∇3

+M∗
33∇2 + θM∗

34 −∇2∇3 −∇1∇3 −∇1∇2)]

a3 = [−M∗
11M

∗
22(M∗

33 − ∇1 − ∇2 − ∇3) + (M∗
11 + M∗

22)(M∗
35u1 + M∗

33∇3 + M∗
33∇2 + θM∗

34

−∇2∇3 −∇1∇3 −∇1∇2)−M∗
35(θu2 + u1∇2)−M∗

33∇2∇3 +∇1∇2∇3 − θM∗
34∇3+

Λ∗2M∗
11M

∗
23 − Λ∗2(M∗

25u1 +M∗
23∇3 +M∗

23∇2 + θM∗
24) + Λ∗1M∗

22M
∗
13 − Λ∗1(M∗

15u1 +M∗
13∇3

+M∗
13∇2 + θM∗

14)]

a4 = [−M∗
11M

∗
22(M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34− nabla2∇3−∇1∇3−∇1∇2) + (M∗

11 +M∗
22)

(M∗
35(θu2 + u1∇2) +M∗

33∇2∇3 −∇1∇2∇3 + θM∗
34∇3) + Λ∗2M∗

11(M∗
25u1 +M∗

23∇3+

M∗
23∇2 + θM∗

24)− Λ∗2M∗
25(θu2 + u1∇2)− Λ∗2(M∗

23∇2∇3 + θM∗
24∇3) + Λ∗1M∗

22(M∗
15u1+

M∗
13∇3 +M∗

13∇2 + θM∗
14)− Λ∗1M∗

15(θu2 + u1∇2)− Λ∗1(M∗
13∇2∇3 + θM∗

14∇3)]

a5 = [−M∗
11M

∗
22(M∗

35(θu2 + u1∇2) +M∗
33∇2∇3−∇1∇2∇3 + θM∗

34∇3) + Λ∗2M∗
11M25(θu2 + u1∇2)

+Λ∗2M∗
11(M∗

23∇2∇3 + θM∗
24∇3) + Λ∗1M∗

22M
∗
15(θu2 + u1∇2) + Λ∗1M∗

22(M∗
13∇2∇3 + θM∗

14∇3)]

Thus we can observe that

a1 > 0 for ∇1 +∇2 +∇3 −M∗
11 −M∗

22 > M∗
33

a2 > 0 for

M∗
11M

∗
22− (M∗

11 +M∗
22)(∇1 +∇2 +∇3) +∇2∇3 +∇1∇3 +∇1∇2−Λ∗2M∗

23−Λ∗1M∗
13 > (M∗

35u1+

M∗
33∇3 +M∗

33∇2 + θM∗
34)− (M∗

11 +M∗
22)M∗

33

a3 > 0 for

M∗
11M

∗
22(∇1 +∇2 +∇3)− (M∗

11 +M∗
22)(∇2∇3 +∇1∇3 +∇1∇2) +∇1∇2∇3 − Λ∗1(M∗

15u1+

M∗
13∇3 +M∗

13∇2 + θM∗
14)− Λ∗2(M∗

25u1 +M∗
23∇3 +M∗

23∇2 + θM∗
24) + Λ∗2M∗

11M
∗
23 + Λ∗1M∗

22M
∗
13

> M∗
11M

∗
22M

∗
33−(M∗

11 +M∗
22)(M∗

35u1 +M∗
33∇3 +M∗

33∇2 +θM∗
34)+M∗

35(θu2 +u1∇2)+M∗
33∇2∇3 +

θM∗
34∇3

a4 > 0 for

M∗
11M

∗
22(∇2∇3+∇1∇3+∇1∇2)−(M∗

11+M∗
22)∇1∇2∇3+Λ∗2M∗

11(M∗
25u1+M∗

23∇3+M∗
23∇2+θM∗

24)

−Λ∗2M∗
25(θu2 + u1∇2)− Λ∗2(M∗

23∇2∇3 + θM∗
24∇3) + Λ∗1M∗

22(M∗
15u1 +M∗

13∇3 +M∗
13∇2 + θM∗

14)

−Λ∗1M∗
15(θu2 + u1∇2)−Λ∗1(M∗

13∇2∇3 + θM∗
14∇3) > M∗

11M
∗
22(M∗

35u1 +M∗
33∇3 +M∗

33∇2 + θM∗
34)

−(M∗
11 +M∗

22)(M∗
35(θu2 + u1∇2) +M∗

33∇2∇3 + θM∗
34∇3)

a5 > 0 for

M∗
11M

∗
22∇1∇2∇3 + Λ∗2M∗

11M
∗
25(θu2 + u1∇2) + Λ∗2M∗

11(M∗
23∇2∇3 + θM∗

24∇3) + Λ∗1M∗
22M

∗
15(θu2

+u1∇2) + Λ∗1M∗
22(M∗

13∇2∇3 + θM∗
14∇3) > M∗

11M
∗
22(M∗

35(θu2 + u1∇2) +M∗
33∇2∇3 + θM∗

34∇3)

according to the above cases we can observe that all coefficients of the characteristic polynomial

are positive.

To see the sign of eigenvalues we use Routh – Hurwitz criteria.

Consider the following Routh – Hurwitz array

91



λ5 1 a2 a4

λ4 a1 a3 a5

λ3 b1 b2

λ2 c1 c2

λ1 d1

λ0 e1

where b1 = a1a2−a3
a1

> 0, b2 = a1a4−a5
a1

> 0

c1 = b1a3−a1b2
b1

> 0, c2 = a5 > 0

d1 = b2c1−b1c2
c1

> 0, e1 = c2 > 0

Since all elements of the first column of the array have the same sign then by Routh – Hur-

witz criteria all roots of the characteristic equation have negative real part, thus the endemic

equilibrium point is locally asymptotically stable.

Global stability of endemic equilibrium point

Theorem 5.6. The endemic equilibrium point E∗ is globally asymptotically stable if Z < Y ,

where

Z = γ1(θI1 +∇2I
∗
2 ) + γ2(u1I1 + u2I2 +∇3P

∗) + γ3(k1I1 + k2I2 + k3P + µS∗p) + (β1 + σ

N∗
)I∗1S1

+(β2 + σ

N∗
)I∗2S1 + (β3 + σ

N∗
)P ∗S1 + (β1 + σ

N
)I1S

∗
1 + (β2 + σ

N
)I2S

∗
1 + (β3 + σ

N
)PS∗1 + σ

N∗
I∗1S1+

σ

N∗
I∗2S1 + σ

N∗
P ∗S2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2

and

Y = −[µS∗1(2− S1

S∗1
− S∗1
S1

) + µS∗2(2− S2

S∗2
− S∗2
S2

) + (2− S1

S∗1
− S∗1
S1

)(β1 + σ

N∗
)I∗1S∗1+

(2− S1

S∗1
− S∗1
S1

)(β2 + σ

N∗
)I∗2S∗1 + (2− S1

S∗1
− S∗1
S1

)(β3 + σ

N∗
)P ∗S∗1+

(2− S2

S∗2
− S∗2
S2

) σ
N∗

I∗1S
∗
2 + (2− S2

S∗2
− S∗2
S2

) σ
N∗

I∗2S
∗
2 + (2− S2

S∗2
− S∗2
S2

) σ
N∗

P ∗S∗2 ]

+[(β1 + σ

N
)I∗1S1 + (β2 + σ

N
)I
∗
1
I1
I2S1 + (β3 + σ

N
)I
∗
1
I1
PS1 + σ

N
I∗1S2 + σ

N

I∗1
I1
I2S2 + σ

N

I∗1
I1
PS2 +∇1I1+

γ1(θI
∗
2
I2
I1 +∇2I2) + γ2(u1

P ∗

P
I1 + u2

P ∗

P
I2 +∇3P ) + γ3(k1

S∗p
Sp
I1 + k2

S∗p
Sp
I2 + k3

S∗p
Sp
P + µSp)]

Proof. Consider the following Lyapunov function

V = (S1−S∗1 lnS1)+(S2−S∗2 lnS2)+(I1−I∗1 lnI1)+γ1(I2−I∗2 lnI2)+γ2(P−S∗p lnP )+γ3(Sp−S∗p lnSp)
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+γ4(A− A∗lnA)

where γ,is for i = 1, 2, 3, 4 are non-negative quantities.

And thus we get V is continuous function and has first order partial derivatives and V has

minimum at E∗.
dV
dt

= (1− S∗1
S1

)dS1
dt

+ (1− S∗2
S2

)dS2
dt

+ (1− I∗1
I1

)dI1
dt

+ γ1(1− I∗2
I2

)dI2
dt

+ γ2(1− P ∗

P
)dP
dt

+ γ3(1− S∗p
Sp

)dSp
dt

+γ4(1− A∗

A
)dA
dt

Substituting the expressions for the derivatives in dV
dt

, it follows that
dV
dt

= (1−S∗1
S1

)[Q1−[(β1+σ
N

)I1+(β2+σ
N

)I2+(β3+σ
N

)P ]S1−µS1]+(1−S∗2
S2

)[Q2− σ
N

[I1+I2+P ]S2−µS2]+

(1− I∗1
I1

)[[(β1+σ
N

)I1+(β2+σ
N

)I2+(β3+σ
N

)P ]S1+ σ
N

[I1+I2+P ]S2−∇1I1]+γ1(1− I∗2
I2

)[θI1−∇2I2]+γ2(1−
P ∗

P
)[u1I1+u2I2−∇3P ]+γ3(1− S∗p

Sp
)[k1I1+k2I2+k3P−µSp]+γ4(1−A∗

A
)[δ1I1+δ2I2+δ3P−(α+µ)A]

Using the relation Q1 = [(β1+σ
N

)I∗1 + (β2+σ
N

)I∗2 + (β3+σ
N

)P ∗]S∗1 + µS∗1 , and

Q2 = σ
N

[I∗1 + I∗2 + P ∗]S∗2 + µS∗2 from the first and second equations of the system (5.1)-(5.7) at

the steady state then dV
dt

can be written as
dV
dt

=
(
1− S∗1

S1

) [[(
β1+σ
N∗

)
I∗1 +

(
β2+σ
N∗

)
I∗2 +

(
β3+σ
N∗

)
P ∗
]
S∗1 + µS∗1

]
−
[(

β1+σ
N

)
I1 +

(
β2+σ
N

)
I2
]
S1

−
(

1− S*
1
S1

) [(
β3+σ
N

)
PS1 − µS1

]
+
(
1− S∗2

S2

) [
σ
N∗

[I∗1 + I∗2 + P ∗]S∗2 + µS∗2 − σ
N

[I1 + I2 + P ]S2
]

−
(
1− S∗2

S2

)
σ
N
µS2 +

(
1− I∗1

I1

) [[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2 +

(
β3+σ
N

)
P
]
S1 + σ

N
[I1 + I2 + P ]S2

]
−
(
1− I∗1

I1

)
σ
N
∇1I1 + γ1

(
1− I∗2

I2

)
[θI1 −∇2I2] + γ2

(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ]

+γ3
(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp] + γ4

(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

This can then be simplified to
dV
dt

=
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1 +

(
1− S∗1

S1

) (
β3+σ
N∗

)
P ∗S∗1+

µ
(
1− S∗1

S1

)
(S∗1 − S1)−

(
1− S∗1

S1

) (
β1+σ
N

)
I1S1−

(
1− S∗1

S1

) (
β2+σ
N

)
I2S1−

(
1− S∗1

S1

) (
β3+σ
N

)
PS1

+
(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2 + µ

(
1− S∗2

S2

)
(S∗2 − S2)

−
(
1− S∗2

S2

)
σ
N
I1S2 −

(
1− S∗2

S2

)
σ
N
I2S2 −

(
1− S∗2

S2

)
σ
N
PS2

+
(
1− I∗1

I1

) [[(
β1+σ
N

)
I1 +

(
β2+σ
N

)
I2 +

(
β3+σ
N

)
P
]
S1 + σ

N
[I1 + I2 + P ]S2 −∇1I1

]
+γ1

(
1− I∗2

I2

)
[θI1 −∇2I2] + γ2

(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ]

+γ3
(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp] + γ4

(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

Using the relation at the steady state

∇1I
∗
1 =

[(
β1+σ
N∗

)
I∗1 +

(
β2+σ
N∗

)
I∗2 +

(
β3+σ
N∗

)
P ∗
]
S∗1 + σ

N∗
[I∗1 + I∗2 + P ∗]S∗2 , ∇2I

∗
2 = θI∗1

∇3P
∗ = u1I

∗
1 + u2I

∗
2 , µS∗p = k1I

∗
1 + k2I

∗
2 + k3P

∗, (α + µ)A∗ = δ1I
∗
1 + δ2I

∗
2 + δ3P

∗

We again simplify
dV
dt

=
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1 +

(
1− S∗1

S1

) (
β3+σ
N∗

)
P ∗S∗1+

µS∗1
(
2− S1

S∗1
− S∗1

S1

)
−
(
β1+σ
N

)
I1S1 +

(
β1+σ
N

)
I1S

∗
1−

(
β2+σ
N

)
I2S1 +

(
β2+σ
N

)
I2S

∗
1−

(
β3+σ
N

)
PS1+(

β3+σ
N

)
PS∗1 +

(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2 +µS∗2

(
2− S2

S∗2
− S∗2

S2

)
− σ
N
I1S2 + σ

N
I1S

∗
2 − σ

N
I2S2 + σ

N
I2S

∗
2 − σ

N
PS2 + σ

N
PS∗2 +

(
1− I∗1

I1

) (
β1+σ
N

)
I1S1+
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(
1− I∗1

I1

) (
β2+σ
N

)
I2S1 +

(
1− I∗1

I1

) (
β3+σ
N

)
PS1 +

(
1− I∗1

I1

)
σ
N
I1S2 +

(
1− I∗1

I1

)
σ
N
I2S2+(

1− I∗1
I1

)
σ
N
PS2−

(
1− I∗1

I1

)
∇1I1+γ1

(
1− I∗2

I2

)
[θI1 −∇2I2]+γ2

(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ]

+γ3
(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp] + γ4

(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1+(

1− S∗1
S1

) (
β3+σ
N∗

)
P ∗S∗1 −

(
β1+σ
N

)
I1S1 +

(
β1+σ
N

)
I1S

∗
1 −

(
β2+σ
N

)
I2S1 +

(
β2+σ
N

)
I2S

∗
1 −

(
β3+σ
N

)
PS1

+
(
β3+σ
N

)
PS∗1 +

(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2

− σ
N
I1S2 + σ

N
I1S

∗
2 − σ

N
I2S2 + σ

N
I2S

∗
2 − σ

N
PS2 + σ

N
PS∗2 +

(
β1+σ
N

)
I1S1 −

(
β1+σ
N

)
I∗1S1+(

β2+σ
N

)
I2S1−

(
β2+σ
N

)
I∗1
I1

+
(
β3+σ
N

)
PS1−

(
β3+σ
N

)
I∗1
I1
PS1 + σ

N
I1S2− σ

N
I∗1S2 + σ

N
I2S2− σ

N

I∗1
I1
I2S2

+ σ
N
PS2 − σ

N

I∗1
I1
PS2 −

(
1− I∗1

I1

)
∇1I1 + γ1

(
1− I∗2

I2

)
[θI1 −∇2I2]

+γ2
(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ] + γ3

(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp]

+γ4
(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1+(

1− S∗1
S1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 +

(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2+(

1− S∗2
S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2 −

(
β1+σ
N

)
I∗1S1+

−
(
β2+σ
N

)
I∗1
I1
I2S1 −

(
β3+σ
N

)
I∗1
I1
PS1 − σ

N
I∗1S2 − σ

N

I∗1
I1
I2S2 − σ

N

I∗1
I1
PS2 −

(
1− I∗1

I1

)
∇1I1

+γ1
(
1− I∗2

I2

)
[θI1 −∇2I2] + γ2

(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ]

+γ3
(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp] + γ4

(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1+

+
(
1− S∗1

S1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 +

(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2

+
(
1− S∗2

S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2 −

(
β1+σ
N

)
I∗1S1

−
(
β2+σ
N

)
I∗1
I1
I2S1 −

(
β3+σ
N

)
I∗1
I1
PS1 − σ

N
I∗1S2 − σ

N

I∗1
I1
I2S2 − σ

N

I∗1
I1
PS2 −∇1I1 +∇1I

∗
1

+γ1
(
1− I∗2

I2

)
[θI1 −∇2I2] + γ2

(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ]

+γ3
(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp] + γ4

(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
1− S∗1

S1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
1− S∗1

S1

) (
β2+σ
N∗

)
I∗2S

∗
1

+
(
1− S∗1

S1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 +

(
1− S∗2

S2

)
σ
N∗
I∗1S

∗
2

+
(
1− S∗2

S2

)
σ
N∗
I∗2S

∗
2 +

(
1− S∗2

S2

)
σ
N∗
P ∗S∗2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2 −

(
β1+σ
N

)
I∗1S1

−
(
β2+σ
N

)
I∗1
I1
I2S1−

(
β3+σ
N

)
I∗1
I1
PS1− σ

N
I∗1S2− σ

N

I∗1
I1
I2S2− σ

N

I∗1
I1
PS2 +

(
β1+σ
N∗

)
I∗1S

∗
1 +

(
β2+σ
N∗

)
I∗2S

∗
1

+
(
β3+σ
N∗

)
P ∗S∗1 + σ

N∗
I∗1S

∗
2 + σ

N∗
I∗2S

∗
2 + σ

N∗
P ∗S∗2 −∇1I1 + γ1

(
1− I∗2

I2

)
[θI1 −∇2I2]

+γ2
(
1− P ∗

P

)
[u1I1 + u2I2 −∇3P ] + γ3

(
1− S∗p

Sp

)
[k1I1 + k2I2 + k3P − µSp]

+γ4
(
1− A∗

A

)
[δ1I1 + δ2I2 + δ3P − (α + µ)A]

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
2− S∗1

S1
− S1

S∗1

) (
β1+σ
N∗

)
I∗1S

∗
1 +

(
β1+σ
N∗

)
I∗1S1

+
(
2− S∗1

S1
− S1

S∗1

) (
β2+σ
N∗

)
I∗2S

∗
1 +

(
β2+σ
N∗

)
I∗2S1 +

(
2− S∗1

S1
− S1

S∗1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
β3+σ
N∗

)
P ∗S1

+
(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 +

(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗1S

∗
2 + σ

N∗
I∗1S1

+
(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗2S

∗
2 + σ

N∗
I∗2S1 +

(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
P ∗S∗2 + σ

N∗
P ∗S2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2
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+ σ
N
PS∗2−

(
β1+σ
N

)
I∗1S1−

(
β2+σ
N

)
I∗1
I1
I2S1−

(
β3+σ
N

)
I∗1
I1
PS1− σ

N
I∗1S2− σ

N

I∗1
I1
I2S2− σ

N

I∗1
I1
PS2−∇1I1

+γ1
[
θI1 +∇2I

∗
2 − θ

I∗2
I2
I1 −∇2I2

]
+ γ2

[
u1I1 + u2I2 +∇3P

∗ − u1
P ∗

P
I1 − u2

P ∗

P
I2 −∇3P

]
+γ3

[
k1I1 + k2I2 + k3P + µS∗p − k1

S∗p
Sp
I1 − k2

S∗p
Sp
I2 − k3

S∗p
Sp
P − µSp

]
+γ4

[
δ1I1 + δ2I2 + δ3P + (α + µ)A∗ − δ1

A∗

A
I1 + δ2

A∗

A
I2 + δ3

A∗

A
P − (α + µ)A

]
= µS∗1

(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
2− S∗1

S1
− S1

S∗1

) (
β1+σ
N∗

)
I∗1S

∗
1

+
(
2− S∗1

S1
− S1

S∗1

) (
β2+σ
N∗

)
I∗2S

∗
1 +

(
2− S∗1

S1
− S1

S∗1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗1S

∗
2

+
(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗2S

∗
2 +

(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
P ∗S∗2 +

(
β1+σ
N∗

)
I∗1S1 +

(
β2+σ
N∗

)
I∗2S1

+
(
β3+σ
N∗

)
P ∗S1 +

(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 + σ

N∗
I∗1S1 + σ

N∗
I∗2S1 + σ

N∗
P ∗S2

+ σ
N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2 −

(
β1+σ
N

)
I∗1S1 −

(
β2+σ
N

)
I∗1
I1
I2S1 −

(
β3+σ
N

)
I∗1
I1
PS1 − σ

N
I∗1S2

− σ
N

I∗1
I1
I2S2− σ

N

I∗1
I1
PS2−∇1I1+γ1 (θI1 +∇2I

∗
2 )−γ1

(
θ
I∗2
I2
I1 +∇2I2

)
+γ2 (u1I1 + u2I2 +∇3P

∗)

−γ2
(
u1

P ∗

P
I1 + u2

P ∗

P
I2 +∇3P

)
+ γ3

(
k1I1 + k2I2 + k3P + µS∗p

)
−γ3

(
k1

S∗p
Sp
I1 + k2

S∗p
Sp
I2 + k3

S∗p
Sp
P + µSp

)
+ γ4 (δ1I1 + δ2I2 + δ3P + (α + µ)A∗)

−γ4
(
δ1

A∗

A
I1 + δ2

A∗

A
I2 + δ3

A∗

A
P + (α + µ)A

)
The coefficients γ1, γ2, γ3,and γ4 are obtained from the following system derived from the above

expression

γ1θI1 −∇1I1 + γ2u1I1 + γ3k1I1 + γ4δ1I1 = 0

−γ1∇2I2 + γ2u2I2 + γ3k2I2 + γ4δ2I2 = 0

−γ2∇3P + γ3k3P + γ4δ3P = 0

Let γ4 = 0, then the above equation reduced to

γ1θI1 −∇1I1 + γ2u1I1 + γ3k1I1 = 0 (5.20)

−γ1∇2I2 + γ2u2I2 + γ3k2I2 = 0 (5.21)

−γ2∇3P + γ3k3P = 0 (5.22)

From (5.22) we have γ3 = γ2∇3P
k3P

= γ2∇3
k3

substituting this in to (5.20) and (5.21) we getγ1θ −∇1 + γ2u1 + γ2∇3
k3

k1 = 0

−γ1∇2 + γ2u2 + γ2∇3
k3

k2 = 0

⇒

 γ1θ + γ2
(
u1 + k1∇3

k3

)
= ∇1

−γ1∇2 + γ2
(
u2 + k2∇3

k3

)
= 0

From −γ1∇2 + γ2
(
u2 + k2∇3

k3

)
= 0 we have γ1 = γ2

(
u2 + k2∇3

k3

)
1
∇2

again putting this in to

γ1θ + γ2
(
u1 + k1∇3

k3

)
= ∇1 we get γ2

(
u2 + k2∇3

k3

)
1
∇2
θ + γ2

(
u1 + k1∇3

k3

)
= ∇1 implies

γ2 = ∇1(
u2+ k2∇3

k3

)
1
∇2

θ+
(
u1+ k1∇3

k3

) and hence
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γ1 =
∇1

(
u2+ k2∇3

k3

)
1
∇2(

u2+ k2∇3
k3

)
1
∇2

θ+
(
u1+ k1∇3

k3

) =
∇1

(
u2+ k2∇3

k3

)
(
u2+ k2∇3

k3

)
θ+∇2

(
u1+ k1∇3

k3

)
γ3 = ∇1∇3

k3

((
u2+ k2∇3

k3

)
1
∇2

θ+
(
u1+ k1∇3

k3

))
Thus
dV
dt

= µS∗1
(
2− S1

S∗1
− S∗1

S1

)
+ µS∗2

(
2− S2

S∗2
− S∗2

S2

)
+
(
2− S∗1

S1
− S1

S∗1

) (
β1+σ
N∗

)
I∗1S

∗
1

+
(
2− S∗1

S1
− S1

S∗1

) (
β2+σ
N∗

)
I∗2S

∗
1 +

(
2− S∗1

S1
− S1

S∗1

) (
β3+σ
N∗

)
P ∗S∗1 +

(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗1S

∗
2

+
(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
I∗2S

∗
2 +
(
2− S∗2

S2
− S2

S∗2

)
σ
N∗
P ∗S∗2 +

(
β1+σ
N∗

)
I∗1S1+

(
β2+σ
N∗

)
I∗2S1+

(
β3+σ
N∗

)
P ∗S1

+
(
β1+σ
N

)
I1S

∗
1 +

(
β2+σ
N

)
I2S

∗
1 +

(
β3+σ
N

)
PS∗1 + σ

N∗
I∗1S1 + σ

N∗
I∗2S1 + σ

N∗
P ∗S2

+ σ
N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2 −

(
β1+σ
N

)
I∗1S1 −

(
β2+σ
N

)
I∗1
I1
I2S1 −

(
β3+σ
N

)
I∗1
I1
PS1 − σ

N
I∗1S2

− σ
N

I∗1
I1
I2S2 − σ

N

I∗1
I1
PS2 −∇1I1 + γ1 (θI1 +∇2I

∗
2 )− γ1

(
θ
I∗2
I2
I1 +∇2I2

)
+γ2 (u1I1 + u2I2 +∇3P

∗)− γ2
(
u1

P ∗

P
I1 + u2

P ∗

P
I2 +∇3P

)
+γ3

(
k1I1 + k2I2 + k3P + µS∗p

)
− γ3

(
k1

S∗p
Sp
I1 + k2

S∗p
Sp
I2 + k3

S∗p
Sp
P + µSp

)
Note that (2 − S1

S∗1
− S∗1

S1
) and (2 − S2

S∗2
− S∗2

S2
) are less than or equal to zero by arithmetic mean

-geometric mean inequality.

This gives

dV

dt
= Z − Y

Where

Z = γ1(θI1 +∇2I
∗
2 ) + γ2(u1I1 + u2I2 +∇3P

∗) + γ3(k1I1 + k2I2 + k3P + µS∗p) + (β1 + σ

N∗
)I∗1S1

+(β2 + σ

N∗
)I∗2S1 + (β3 + σ

N∗
)P ∗S1 + (β1 + σ

N
)I1S

∗
1 + (β2 + σ

N
)I2S

∗
1 + (β3 + σ

N
)PS∗1 + σ

N∗
I∗1S1+

σ

N∗
I∗2S1 + σ

N∗
P ∗S2 + σ

N
I1S

∗
2 + σ

N
I2S

∗
2 + σ

N
PS∗2

and

Y = −[µS∗1(2− S1
S∗1
− S∗1

S1
) + µS∗2(2− S2

S∗2
− S∗2

S2
) + (2− S1

S∗1
− S∗1

S1
)(β1+σ

N∗
)I∗1S∗1

+(2− S1
S∗1
− S∗1

S1
)(β2+σ

N∗
)I∗2S∗1 + (2− S1

S∗1
− S∗1

S1
)(β3+σ

N∗
)P ∗S∗1

+(2− S2
S∗2
− S∗2

S2
) σ
N∗
I∗1S

∗
2 + (2− S2

S∗2
− S∗2

S2
) σ
N∗
I∗2S

∗
2 + (2− S2

S∗2
− S∗2

S2
) σ
N∗
P ∗S∗2 ]

+[(β1+σ
N

)I∗1S1 + (β2+σ
N

) I
∗
1
I1
I2S1 + (β3+σ

N
) I
∗
1
I1
PS1 + σ

N
I∗1S2 + σ

N

I∗1
I1
I2S2

+ σ
N

I∗1
I1
PS2 +∇1I1 + γ1(θ I

∗
2
I2
I1 +∇2I2) + γ2(u1

P ∗

P
I1 + u2

P ∗

P
I2 +∇3P )

+γ3(k1
S∗p
Sp
I1 + k2

S∗p
Sp
I2 + k3

S∗p
Sp
P + µSp)]

Hence, if Z < Y then, dV
dt

will be negative definite, implying that dV
dt
< 0. Also dV

dt
= 0 if and

only if S1 = S∗1 , S2 = S∗2 , I1 = I∗1 , I2 = I∗2 , P = P ∗, Sp = S∗p and A = A∗.

Therefore, the largest compact invariant set in {(S∗1 , S∗2 , I∗1 , I∗2 , P ∗, S∗p , A∗) ∈ Ω : dV
dt

= 0} is
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the singleton {E∗}, where E∗ is endemic equilibrium of the system (5.1)-(5.7). By LaSalle’s

invariant principle, it then implies that E∗ is globally asymptotically stable in Ω if Z < Y .
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Chapter 6

Sensitivity analysis and Numerical

simulation of Treatment and Inflow

Infective Immigrants on the Dynamics

of HIV/AIDS

This chapter will discuss about Sensitivity analysis and Numerical simulation of the model

stated under chapter four.

The parameter values and assumptions of any model are subject to change and error. Sen-

sitivity analysis is the investigation of these potential changes & errors and their impacts on

conclusions to be drawn from the model. Here we use it to discover parameters that have a high

impact on reproduction number R0. We calculate the sensitivity indices of the reproductive

number R0, to the parameters in the model. These indices tell us how crucial each parameter is

to disease transmission and prevalence. The normalized forward sensitivity index of a variable

to a parameter is the ratio of the relative change in the variable to the relative change in the

parameter. When the variable is a differentiable function of the parameter, the sensitivity index

may be alternatively defined using partial derivatives [78].

Definition: The normalized forward sensitivity index of a variable, u that depends differen-

tiable on a parameter p, is defined as:

SI(p) = ∂u

∂p
× p

u
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If the magnitude of sensitivity index is high for the parameter p out of other parameters then

we say that p is more sensitive parameter.

Here we consider parameters β1, β2, σ, δ1, δ2, θ, k1, k2, µ, p1, p2 and φ to see the sensitivity pa-

rameter with regard to basic reproduction number R0 as follows:

SI (β1) = ∂R0

∂β1
x
β1

R0
= β1 (k2 + δ2 + µ− p2)

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) (k2 + δ2 + µ− p2)R0

= β1 (k2 + δ2 + µ− p2)
∆1∆2

(
∆2(β1+σ)+θ(β2+σ)

∆1∆2

)
= β1 (k2 + δ2 + µ− p2)

(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)

SI (β2) = ∂R0

∂β2
x
β2

R0
= θβ2

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) (k2 + δ2 + µ− p2)R0

= θβ2

∆1∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= θβ2

(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)

SI (σ) = ∂R0

∂σ
x
σ

R0
= σ (k2 + δ2 + µ+ θ − p2)

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) (k2 + δ2 + µ− p2)R0

= σ (k2 + δ2 + µ+ θ − p2)
∆1∆2

(
∆2(β1+σ)+θ(β2+σ)

∆1∆2

)
= σ (k2 + δ2 + µ+ θ − p2)

(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)

SI (δ1) = ∂R0

∂δ1
x
δ1

R0
= −δ1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)2 (k2 + δ2 + µ− p2)R0

= −δ1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
∆1

2∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= −δ1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

= −δ1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)

SI (δ2) = ∂R0

∂δ2
x
δ2

R0
= δ2 [(β1 + σ) (k2 + δ2 + µ− p2)− ((k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ))]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) (k2 + δ2 + µ− p2)2R0

= δ2 [(β1 + σ) (k2 + δ2 + µ− p2)− ((k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ))]
∆1∆2

2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= −δ2θ (β2 + σ)

(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

SI (k1) = ∂R0

∂k1
x
k1

R0
= −k1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)2 (k2 + δ2 + µ− p2)R0
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= −k1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
∆1

2∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= −k1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

= −k1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)
SI (k2) = ∂R0

∂k2
x k2
R0

= k2 [(β1 + σ) (k2 + δ2 + µ− p2)− ((k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ))]
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) (k2 + δ2 + µ− p2)2R0

= k2 [(β1 + σ) (k2 + δ2 + µ− p2)− ((k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ))]
∆1∆2

2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= −k2θ (β2 + σ)

(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

SI (p1) = ∂R0
∂p1

x p1
R0

= p1[(k2+δ2+µ−p2)(β1+σ)+θ(β2+σ)]
(k1+θ+δ1+µ−p1− (1−ε)φ)2(k2+δ2+µ−p2)R0

= p1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
∆1

2∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)

= p1 [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

= p1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ)

SI (p2) = ∂R0
∂p2

x p2
R0

= p2[−(β1+σ)(k2+δ2+µ−p2)−((k2+δ2+µ−p2)(β1+σ)+θ(β2+σ))(−1)]
(k1+θ+δ1+µ−p1− (1−ε)φ)(k2+δ2+µ−p2)2R0

= p2 [θ (β2 + σ)]
∆1∆2

2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= p2 [θ (β2 + σ)]

(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
SI (θ) = ∂R0

∂θ
x θ
R0

= θ[(β2+σ)(k1+θ+δ1+µ−p1− (1−ε)φ)−((k2+δ2+µ−p2)(β1+σ)+θ(β2+σ))]
(k1+θ+δ1+µ−p1− (1−ε)φ)2(k2+δ2+µ−p2)R0

= θ [(k1 + δ1 + µ− p1 − (1− ε)φ)− (k2 + δ2 + µ− p2) (β1 + σ)]
∆1

2∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
= θ [(k1 + δ1 + µ− p1 − (1− ε)φ)− (k2 + δ2 + µ− p2) (β1 + σ)]

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

SI (φ) = ∂R0
∂φ
x φ
R0

= φ(1−ε)[(k2+δ2+µ−p2)(β1+σ)+θ(β2+σ)]
(k1+θ+δ1+µ−p1− (1−ε)φ)2(k2+δ2+µ−p2)R0

= φ (1− ε) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
∆1

2∆2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)
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= φ (1− ε) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

= φ (1− ε)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)

SI (µ) = ∂R0
∂µ
x µ
R0

= µ[(β1+σ)∆1∆2−(∆2(β1+σ)+θ(β2+σ))[(k1+θ+δ1+µ−p1− (1−ε)φ)+(k2+δ2+µ−p2)]
(k1+θ+δ1+µ−p1− (1−ε)φ)2(k2+δ2+µ−p2)2R0

= µ [(β1 + σ) ∆1∆2 − (∆2 (β1 + σ) + θ (β2 + σ))[ ∆1 + ∆2]]
∆1

2∆2
2
(

∆2(β1+σ)+θ(β2+σ)
∆1∆2

)

=
−µ

[
∆1θ (β2 + σ) + ∆2

2 (β1 + σ) + ∆2θ (β1 + σ)
]

∆1∆2 [∆2 (β1 + σ) + θ (β2 + σ)]

= −µ
[

∆1θ (β2 + σ)
∆1∆2 [∆2 (β1 + σ) + θ (β2 + σ)] + ∆2

2 (β1 + σ) + ∆2θ (β1 + σ)
∆1∆2 [∆2 (β1 + σ) + θ (β2 + σ)]

]

= −µ
[

θ (β2 + σ)
(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

]

−µ
[

1
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)

]

6.1 Parameter Values for Numerical Simulation and Sen-

sitivity Analysis

To perform numerical simulation and sensitivity analysis we collected the following parameter

values from different data sources.

Table 6.1: Description of parameters and parameter val-

ues

Parameter Parameter Description Value Ref.

β1 Probability of transmission of the disease to susceptible

individuals by unaware infective

0.9 [104]

β2 Probability of transmission of the disease to susceptible

individuals by aware infective

0.7 [104]

δ1 Rate of development to AIDS from unaware infective 0.3 [104]

δ2 Rate of development to AIDS from aware infective 0.02 [104]

σ Rate of transmission through blood borne 0.003 [50]

µ Natural mortality 0.02 [60]
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θ Rate of status awareness due to screening method 0.3 [104]

k1 Rate of treatment of unaware infective 0.1 Assumed

k2 Rate of treatment of aware infective 0.4 [79]

p1 Rate of unaware infective immigrants 0.1 [104]

p2 Rate of aware infective immigrants 0.2 [104]

φ Rate of vertical transmission 0.03 [104]

ε Probability of death at birth 0.2 [104]

α AIDS induced death rate 0.9 [104]

We calculate the reproduction number R0 using values shown in table 6.1

R0 = (k2 + δ2 + µ− p2)(β1 + σ) + θ(β2 + σ)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ)(k2 + δ2 + µ− p2)

= (0.4 + 0.02 + 0.02− 0.2) (0.9 + 0.003) + 0.3 (0.7 + 0.003)
(0.1 + 0.3 + 0.3 + 0.02− 0.1− (1− 0.2) 0.03) (0.4 + 0.02 + 0.02− 0.2)

= (0.24) (0.903) + 0.3 (0.703)
(0.62− 0.024) 0.24 = 0.21672 + 0.2109

(0.596) 0.24

= 0.42762
(0.596) (0.24) = 0.42762

0.14304 = 2.9895

⇒ R0 = 2.99

This tells us that the disease persists in the population.

We calculate the sensitivity indices of R0 using the derived formula above for each model

parameter using values shown in table 6.1. These are:

SI (β1) = β1 (k2 + δ2 + µ− p2)
(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ) = 0.51

SI (β2) = θβ2

(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ) = 0.49

SI (σ) = σ (k2 + δ2 + µ+ θ − p2)
(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ) = 0.00

SI (δ1) = −δ1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) = −0.50

SI (δ2) = −δ2θ (β2 + σ)
(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)] = −0.04

SI (k1) = −k1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) = −0.17

SI (k2) = −k2θ (β2 + σ)
(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)] = −0.28
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SI (p1) = p1

(k1 + θ + δ1 + µ− p1 − (1− ε)φ) = 0.17

SI (p2) = p2 [θ (β2 + σ)]
(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)] = 0.41

SI (θ) = θ [(k1 + δ1 + µ− p1 − (1− ε)φ)− (k2 + δ2 + µ− p2) (β1 + σ)]
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

= 0.09

SI (φ) = φ (1− ε)
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) = 0.04

SI (µ) = −µ[ θ (β2 + σ)
(k2 + δ2 + µ− p2) [(k2 + δ2 + µ− p2) (β1 + σ) + θ (β2 + σ)]

+ 1
(k1 + θ + δ1 + µ− p1 − (1− ε)φ) ] = −0.07

The results are displayed in Table 6.2.

Table 6.2: Sensitivity indices of R0

Parameter Sensitivity Index

β1 0.51

δ1 -0.50

β2 0.49

p2 0.41

k2 -0.28

p1 0.17

k1 -0.17

θ 0.09

µ -0.07

δ2 -0.04

φ 0.04

σ 0.00

Table 6.2 contains positive and negative sensitivity indices. The parameters are ordered from

most sensitive to least. The most sensitive parameter is the probability of the disease transmits

to susceptible people by unaware infective humans, β1 and the least sensitive parameter is the

rate of transmission through blood borne, σ. The indices having positive signs increase the

value of R0 as one increase them and those having negative signs decrease the value of R0,
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when they are increased.

One of the most sensitive parameter is β1. Increasing (or decreasing) β1 by 10%, increases

(or decreases) R0 by 5.1%. Also, since the sensitivity index of δ1 = −0.50 , increasing δ1 by

10%, decreases R0 by 5.0%. We can similarly interpret the remaining parameter values. The

effectiveness of varying each parameter can thus be determined. As regards HIV/AIDS control,

interventions must target the most sensitive parameters. For instance, interventions that target

person to person transmission of the disease are the most effective in controlling the disease.

6.2 Numerical Simulation

In this section we will discuss the relationship between basic reproduction number and a pa-

rameter using graphs as follows.

Figure 6.1: the relationship between the reproduction number and the rate of horizontal trans-

mission of the disease from unaware infective class.

From figure 6.1, we can observe that an increase in the rate of transmission, β1, makes an

increase in the reproduction number, R0. That is the disease always persists for any value of

parameter β1.

From figure 6.2, we can observe that an increase in the rate of transmission, β2, makes an

increase in the reproduction number, R0 . That is the disease always persists for any value of

parameter β2.
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Figure 6.2: the relationship between the reproduction number and the rate of horizontal trans-

mission of the disease from aware infective class.

Figure 6.3: the relationship between the reproduction number and the rate of blood borne

transmission of the disease.

From figure 6.3, we can observe that an increase in the rate of blood borne transmission, σ,

makes an increase in the reproduction number, R0. That is the disease always persists for any

value of parameter σ.

From figure 6.4, we can observe that an increase in the rate of progress of unaware infective

to AIDS, δ1, between the parametric values 0 and 1.49 makes a decrease in the reproduction
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Figure 6.4: the relationship between the reproduction number and the rate of progress of

unaware infective to AIDS.

number, R0, but the reproduction number is greater than one that indicates the disease per-

sists. If the parameter value of δ1 greater than 1.49, then the reproduction number decreases

and becomes less than one where the disease dies out.

Figure 6.5: the relationship between the reproduction number and the rate of progress of aware

infective to AIDS.

From figure 6.5, we can observe that an increase in the rate of progress of aware infective to

AIDS, δ2, makes a decrease in the reproduction number, R0, but the reproduction number is

greater than one that indicates the disease still persists.
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Figure 6.6: the relationship between the reproduction number and the rate of unaware infective

immigrants.

From figure 6.6, we can observe that an increase in the rate of unaware infective immigrants,

p1, between 0 and 0.70, makes an increase in the reproduction number, R0 > 1 and tell us the

disease persists.

Figure 6.7: the relationship between the reproduction number and the rate of aware infective

immigrants.

From figure 6.7, we can observe that an increase in the rate of aware infective immigrants,
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p2, between 0 and 0.44, makes an increase in the reproduction number, R0 > 1 and tell us

the disease persists. If the rate of aware infective immigrants between 0.44 and 1.13 makes an

increase in the reproduction number with, R0 < 1 and tell us the disease not persists. Whereas,

the rate of aware infective immigrants greater than 1.13, makes an increase in the reproduction

number, R0 > 1, and tell us the disease persists.

Figure 6.8: the relationship between the reproduction number and the rate of transmission of

unaware infective to seropositive class.

From figure 6.8, we can observe that an increase in the rate of transmission of unaware infective

to seropositive class, k1, between 0 and 1.29, makes a decrease in the reproduction number,

with R0 > 1 and tell us the disease persists. If the rate of transmission of unaware infective to

seropositive class greater than 1.29 makes a decrease in the reproduction number with, R0 < 1

and tell us the disease dies out.

From figure 6.9, we can observe that an increase in the rate of transmission of aware infective

to seropositive class, k2, makes a decrease in the reproduction number, with R0 > 1 and tell us

the disease still persists.

From figure 6.10, we can observe that an increase in the rate of transmission of unaware infec-

tive to aware infective, θ, then the reproduction number almost constant, with R0 > 1 and tell

us the disease still persists with constant reproduction number(i.e approximately 2.93 ).
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Figure 6.9: the relationship between the reproduction number and the rate of transmission of

aware infective to seropositive class.

Figure 6.10: the relationship between the reproduction number and the rate of transmission of

unaware infective to aware infective class.

From figure 6.11, we can observe that an increase in the rate of vertical transmission,φ, between

0 and 0.78 then the reproduction number also increases, with R0 > 1 and tell us the disease

persists.

From figure 6.12, we can observe that an increase in the natural death rate, µ, between 0 and

0.59 then the reproduction number decreases, with R0 > 1 and tell us the disease still persists.

If the natural death rate is greater than 0.59, then the reproduction number is decreases, with

R0 < 1 and this tell us the disease dies out.
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Figure 6.11: the relationship between the reproduction number and the rate of vertical trans-

mission.

Figure 6.12: the relationship between the reproduction number and the natural death rate.

6.3 Results and Discussion

In this section, we would like to present the results and findings obtained from the analysis of

the model.

From sensitive analysis we observed that the most sensitive parameter is the probability of the

disease transmits to susceptible people by unaware infective humans, β1 and the least sensitive

parameter is the rate of transmission through blood borne,σ. The indices having positive signs

increase the value of R0 as one increase them and those having negative signs decrease the value

of R0, when they are increased.
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Results from Numerical simulation show that as the probability of transmission of the disease

from unaware infective and aware infective increases, the basic reproduction number increases.

This will result in increasing on the transmission of HIV/AIDS.

We can observe that an increase in the rate of blood borne transmission, σ, makes an increase

in the reproduction number, R0. That is the disease always persists for any value of parameter

σ.

An increase in the rate of progress of unaware infective to AIDS, δ1, between the parametric

values 0 and 1.49 makes a decrease in the reproduction number, R0, but the reproduction

number is greater than one that indicates the disease persists. If the parameter value of δ1

greater than 1.49, then the reproduction number decreases and becomes less than one where

the disease dies out.

An increase in the rate of progress of aware infective to AIDS, δ2, makes a decrease in the

reproduction number, R0, but the reproduction number is greater than one that indicates the

disease still persists.

We also observed that an increase in the rate of unaware infective immigrants, p1, between 0

and 0.70, makes an increase in the reproduction number, R0 > 1 and tell us the disease persists.

An increase in the rate of aware infective immigrants, p2, between 0 and 0.44, makes an increase

in the reproduction number, R0 > 1 and tell us the disease persists. If the rate of aware infective

immigrants between 0.44 and 1.13 makes an increase in the reproduction number with, R0 < 1

and tell us the disease dies out. Whereas, the rate of aware infective immigrants greater than

1.13, makes an increase in the reproduction number, R0 > 1, and tell us the disease persists.

We can also observed that an increase in the rate of transmission of unaware infective to

seropositive class, k1, between 0 and 1.29, makes a decrease in the reproduction number, with

R0 > 1 and tell us the disease persists. If the rate of transmission of unaware infective to

seropositive class greater than 1.29 makes a decrease in the reproduction number with, R0 < 1

and tell us the disease dies out.

An increase in the rate of transmission of aware infective to seropositive class, k2, makes a

decrease in the reproduction number, with R0 > 1 and tell us the disease still persists.

We also observed that an increase in the rate of transmission of unaware infective to aware

infective, θ, then the reproduction number almost constant, with R0 > 1 and tell us the disease

still persists with constant reproduction number(i.e approximately 2.93 ).

An increase in the rate of vertical transmission, φ, between 0 and 0.78 then the reproduction

number also increases, with R0 > 1 and tell us the disease persists.

We can also observed that an increase in the natural death rate, µ, between 0 and 0.59 then the
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reproduction number decreases, with R0 > 1 and tell us the disease still persists. If the natural

death rate is greater than 0.59, then the reproduction number is decreases, with R0 < 1 and

this tell us the disease dies out.

6.4 Conclusions

We proposed an improvement of the model [104] that is to show the effect of unaware infective

immigrants, aware infective immigrants, vertical and blood borne transmission and treatment

on the dynamics of HIV/AIDS. A non-linear differential equation was formulated to represent

the model. The stability analysis on the model shows that the disease free equilibrium point (E0)

is shown to be locally asymptotically stable and globally asymptotically stable when R0 < 1and

the positive endemic equilibrium point (E∗) is shown to be locally asymptotically stable and

globally asymptotically stable when R0 > 1. A sensitivity analysis of the basic reproduction

number indicates that transmission probability, the rate of progress to AIDS and the rate

of aware infective immigrants are the most sensitive parameters that can be used to control

the spread of the disease. Results from Numerical simulation show that as the probability of

transmission of the disease to susceptible individuals by unaware and aware infective individuals

increases, the basic reproduction number also increases. This will result in increasing on the

transmission of HIV/AIDS.
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Chapter 7

Parameter estimation, Sensitivity

analysis and Numerical simulations on

the Dynamics of HIV/AIDS with Age

Structure and Inflow Immigrants in

Ethiopia

This chapter discussed about Parameter estimation, Sensitivity analysis and Numerical simu-

lations of the model developed and analyzed under chapter five.

7.1 Parameter estimation

Estimation theory is a branch of statistics that deals with estimating the values of parameters

based on measured empirical data that has a random component. The parameters describe

an underlying physical setting in such a way that their value affects the distribution of the

measured data. The term parameter estimation refers to the process of using sample data to

estimate the parameters of the selected distribution. In this paper, we analyzed a non-linear

mathematical S1S2I1I2PSPA model of HIV virus with horizontal, vertical, and blood born

transmissions using the secondary data obtained from Ministry of Health of Federal Republic

of Ethiopia, Central Statistical Agency (CSA) and related materials. To study the spread and
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control of HIV/AIDS in Ethiopia, we divide the total population in to seven compartments,

such as S1: sexually mature susceptible age greater than or equal to 15 years, S2: sexually

immature susceptible age less than 15, I1: unaware infective, I2: aware infective, P : Pre-AIDS,

Sp: seropositive/treatment and A: AIDS classes. We obtained secondary data from the reports

of world Health Organization (WHO), Federal Democratic Republic of Ethiopia Ministry of

Health and related materials.

Table 7.1: Ethiopia Demographics Profile 2019 in

gender[47]

Description Notation Values

Total number of Female in Ethiopia F 54,550,770

Total number of Male in Ethiopia M 53,835,621

Total number of population in Ethiopia T 108,386,391

Table 7.2: Ethiopia Demographics Profile 2019 in

ages[47]

Description Values

Total number of people under 15 years old 41,831,101

Total number of people 15 years old and above 61,555,290

Total number of population in Ethiopia 108,386,391

In this paper the total population is N = S1 +S2 + I1 + I2 +P +Sp +A. The parameter values

of the present model are obtained as:

Q1 =average number of susceptible immigrants arriving to a country= 230, 000/year

Q2 =birth rate× sexually immature population= (0.79×41,831,101)
100 = 330465/year

β1 = Effective contact of unaware infective
Total contact of unaware infective = 0.83

β2 = Effective contact of aware infective
Total contact of aware infective = 0.7

β3 = Effective contact of Pre-AIDS
Total contact of Pre-AIDS individuals = 0.9

σ = Average number of infective by blood born transmission per year
Total number of infective = 0.03

µ = Natural death rate = 0.0065

θ = number of unaware infected who know their status per year
total number of unaware infective = 0.79

δ1 = 1
Average life time of unaware infective individual progress to AIDS = 0.06

δ2 = 1
Average life time of aware infective individual progress to AIDS = 0.06
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δ3 = 1
Average life time of Pre-AIDS individual progress to AIDS = 0.4621

k1 = Average number of treated unaware HIV infected per year
Total number unaware HIV infected population = 0.02

k2 = Average number of treated aware HIV infected per year
Total number of aware HIV infected population = 0.65

k3 = Average number of treated Pre-AIDS individuals per year
Total number of Pre-AIDS population = 0.65

p1 = Average number of unaware HIV infective immigrants per year
Tota number of infective = 0.016

p2 = Average number of aware HIV infective immigrants per year
Tota number of infective = 0.013

u1 = 1
Average life time of unaware infective individual progress to Pre-AIDS = 0.36

u2 = 1
Average life time of aware infective individual progress to Pre-AIDS = 0.57

φ = Average number of infected new born per year
Total number of new born = 0.45

ε = Average number of new born death per year
Total number of birth = 0.0281

α = Average number of AIDS population died due to the disease per year
Total number of infective = 0.0159

Table 7.3: Summary of Parameter values

Parameter Parameter Description Value Data

Source

Q1 Recruitment in to sexual mature population 230000 [106]

Q2 Recruitment in to sexual immature population 330465 [47]

β1 The horizontal transmission rate of unaware infec-

tive to susceptible individuals

0.83 [29]

β2 The horizontal transmission rate of aware infective

to susceptible individuals

0.7 [29]

β3 The horizontal transmission rate of Pre-AIDS to

susceptible individuals

0.9 [29]

σ Rate of transmission through blood borne 0.03 [74]

δ1 Rate at which unaware infective develop full blown

AIDS

0.06 [46]

δ2 Rate at which aware infective develop full blown

AIDS

0.06 [46]

δ3 Progression rate of Pre-AIDS individuals to full

blown AIDS

0.4621 [110]

µ Natural mortality 0.0065 [48]

θ Rate of status awareness due to screening method 0.79 [49]
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k1 Rate of treatment of unaware infective 0.02 [49]

k2 Rate of treatment of aware infective 0.65 [49]

k3 Rate of treatment of Pre-AIDS 0.65 [49]

p1 Rate of unaware infective immigrants 0.016 [106]

p2 Rate of aware infective immigrants 0.013 [106]

u1 Rate of progress to Pre-AIDS from unaware infec-

tive

0.36 [110]

u2 Rate of progress to Pre-AIDS from aware infective 0.57 [110]

φ Rate of vertical transmission 0.45 [30]

ε Probability of death at birth 0.0281 [45]

α AIDS induced death rate 0.0159 [47]

7.1.1 Sensitivity analysis

The parameter values and assumptions of any model are subject to change and error. Sen-

sitivity analysis is the investigation of these potential changes & errors and their impacts on

conclusions to be drawn from the model. Here we use it to discover parameters that have a high

impact on reproduction number R0. We calculate the sensitivity indices of the reproductive

number R0, to the parameters in the model. These indices tell us how crucial each parameter is

to disease transmission and prevalence. The normalized forward sensitivity index of a variable

to a parameter is the ratio of the relative change in the variable to the relative change in the

parameter. When the variable is a differentiable function of the parameter, the sensitivity index

may be alternatively defined using partial derivatives [78].

Definition: The normalized forward sensitivity index of a variable, u that depends differen-

tiable on a parameter p, is defined as:

SI(p) = ∂u

∂p
× p

u

If the magnitude of sensitivity index is high for the parameter p out of other parameters then

we say that p is more sensitive parameter.

Here we consider parameters Q1, Q2, β1, β2, β3, σ, δ1, δ2, δ3, θ, k1, k2, k3, φ, p1, p2, u1, u2, ε and µ to

see the sensitivity parameter with regard to basic reproduction number R0 as follows:

R0 = (β1
Q1

Q1 +Q2
+ σ) 1

O1
+ (β2

Q1

Q1 +Q2
+ σ) θ

∇1∇2
+ (β3

Q1

Q1 +Q2
+ σ)θu2 + u1∇2

∇1∇2∇3
= 1.05
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SI (Q1) = ∂R0
∂Q1

xQ1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂Q1


[
Q1
R0

]

=
[

∂
∂Q1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂Q1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂Q1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
Q1
R0

]
=
[

β1Q2
∇1(Q1+Q2)2 + β2Q2θ

∇1∇2(Q1+Q2)2 + β3Q2(θu2+u1∇2)
∇1∇2∇3(Q1+Q2)2

] [
Q1
R0

]
= 1

(Q1+Q2)2

[
β1Q2
∇1

+ β2Q2θ
∇1∇2

+ β3Q2(θu2+u1∇2)
∇1∇2∇3

] [
Q1
R0

]
= 0.00

SI (Q2) = ∂R0
∂Q2

xQ2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂Q2


[
Q2
R0

]

=
[

∂
∂Q2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂Q2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂Q2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
Q2
R0

]
=
[

−β1Q1
∇1(Q1+Q2)2 + −β2Q1θ

∇1∇2(Q1+Q2)2 + −β3Q1(θu2+u1∇2)
∇1∇2∇3(Q1+Q2)2

] [
Q2
R0

]
= −1

(Q1+Q2)2

[
β1Q1
∇1

+ β2Q1θ
∇1∇2

+ β3Q1(θu2+u1∇2)
∇1∇2∇3

] [
Q2
R0

]
= 0.00

SI (β1) = ∂R0
∂β1

x β1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂β1


[
β1
R0

]

=
[
∂
∂β1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂β1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂β1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
β1
R0

]
=
[

Q1
∇1(Q1+Q2)

] [
β1
R0

]
= 0.41

SI (β2) = ∂R0
∂β2

x β2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂β2


[
β2
R0

]

=
[
∂
∂β2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂β2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂β2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
β2
R0

]
=
[

θQ1
∇1∇2(Q1+Q2)

] [
β2
R0

]
= 0.22

SI (β3) = ∂R0
∂β3

x β3
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂β3


[
β3
R0

]

=
[
∂
∂β3

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂β3

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂β3

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
β3
R0

]
=
[

(θu2+u1∇2)Q1
∇1∇2∇3(Q1+Q2)

] [
β3
R0

]
= 0.29

SI (σ) = ∂R0
∂σ
x σ
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂σ


[
σ
R0

]

=
[
∂
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(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
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(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂σ

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
σ
R0

]
=
[

1
∇1

+ θ
∇1∇2

+ θu2+u1∇2
∇1∇2∇3

] [
σ
R0

]
=
[
∇2∇3+θ∇3+θu2+u1∇2

∇1∇2∇3

] [
σ
R0

]
= 0.08
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SI (δ1) = ∂R0
∂δ1

x δ1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂δ1


[
δ1
R0

]

=
[
∂
∂δ1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂δ1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂δ1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
δ1
R0

]
=
− (β1

Q1
Q1+Q2

+ σ
)

1
∇12 −

(
β2

Q1
Q1+Q2

+σ
)
θ

∇2∇12 −

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇2∇3∇12

 [ δ1
R0

]
=
[
−R0
∇1

] [
δ1
R0

]
= − δ1

∇1
= −0.08

SI (δ2) = ∂R0
∂δ2

x δ2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂δ2


[
δ2
R0

]

=
[
∂
∂δ2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂δ2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂δ2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
δ2
R0

]
=
−

(
β2

Q1
Q1+Q2

+σ
)
θ

∇1∇22 −

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ δ2
R0

]

= −
(β2

Q1
Q1+Q2

+σ
)
θ∇3+

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ δ2
R0

]
= −0.02

SI (δ3) = ∂R0
∂δ3

x δ3
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂δ3


[
δ3
R0

]

=
[
∂
∂δ3

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂δ3

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂δ3

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
δ3
R0

]
=
−

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇1∇2∇32

 [ δ3
R0

]

= −
(β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇1∇2∇32

 [ δ3
R0

]
= −0.13

SI (θ) = ∂R0
∂θ
x θ
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂θ


[
θ
R0

]

=
[
∂
∂θ

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂θ

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂θ

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
θ
R0

]
=
[(β2

Q1
Q1+Q2

+σ
)
∇3+

(
β3

Q1
Q1+Q2

+σ
)
u2

]
∇1∇2∇3−R0∇1∇22∇32

(∇1∇2∇3)2

 [ θ
R0

]

=
[(β2

Q1
Q1+Q2

+σ
)
∇3+

(
β3

Q1
Q1+Q2

+σ
)
u2

]
∇1∇2∇3

− R0
∇1

 [ θ
R0

]
= −0.62

SI (k1) = ∂R0
∂k1

x k1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂k1


[
k1
R0

]

=
[
∂
∂k1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂k1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂k1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
k1
R0

]
=
− (β1

Q1
Q1+Q2

+ σ
)

1
∇12 −

(
β2

Q1
Q1+Q2

+σ
)
θ

∇2∇12 −

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇2∇3∇12

 [ k1
R0

]
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=
[
−R0
∇1

] [
k1
R0

]
= − k1

∇1
= −0.03

SI (k2) = ∂R0
∂k2

x k2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂k2


[
k2
R0

]

=
[
∂
∂k2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂k2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂k2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
k2
R0

]
=
−

(
β2

Q1
Q1+Q2

+σ
)
θ

∇1∇22 −

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ k2
R0

]

= −
(β2

Q1
Q1+Q2

+σ
)
θ∇3+

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ k2
R0

]
= −0.20

SI (k3) = ∂R0
∂k3

x k3
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂k3


[
k3
R0

]

=
[
∂
∂k3

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂k3

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂k3

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
k3
R0

]
=
−

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇1∇2∇32

 [ k3
R0

]

= −
(β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇1∇2∇32

 [ k3
R0

]
= −0.18

SI (φ) = ∂R0
∂φ
x φ
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂φ


[
φ
R0

]

=
[
∂
∂φ

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂φ

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂φ

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
φ
R0

]
=
(β1

Q1
Q1+Q2

+ σ
)

(1−ε)
∇12 +

(
β2

Q1
Q1+Q2

+σ
)
θ(1−ε)

∇2∇12 +

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)(1−ε)

∇2∇3∇12

 [ φ
R0

]
=
[

(1−ε)R0
∇1

] [
φ
R0

]
= (1−ε)φ

∇1
= 0.56

SI (p1) = ∂R0
∂p1

x p1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂p1


[
p1
R0

]

=
[
∂
∂p1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂p1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂p1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
p1
R0

]
=
(β1

Q1
Q1+Q2

+ σ
)

1
∇12 +

(
β2

Q1
Q1+Q2

+σ
)
θ

∇2∇12 +

(
β3

Q1
Q1+Q2

+σ
)

(θu2+u1∇2)

∇2∇3∇12

 [ p1
R0

]
=
[
R0
∇1

] [
p1
R0

]
= p1
∇1

= 0.02

SI (p2) = ∂R0
∂p2

x p2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂p2


[
p2
R0

]

=
[
∂
∂p2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂p2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂p2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
p2
R0

]
=
(β2

Q1
Q1+Q2

+σ
)
θ

∇1∇22 +

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ p2
R0

]
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=
(β2

Q1
Q1+Q2

+σ
)
θ∇3+

(
β3

Q1
Q1+Q2

+σ
)
θu2

∇1∇3∇22

 [ p2
R0

]
= 0.00

SI (u1) = ∂R0
∂u1

x u1
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂u1


[
u1
R0

]

=
[
∂
∂u1

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂u1

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂u1

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
u1
R0

]
=
(β3

Q1
Q1+Q2

+σ
)
∇2∇1∇2∇3−R0∇1∇22∇32

(∇1∇2∇3)2

 [ u1
R0

]

=
(β3

Q1
Q1+Q2

+σ
)

∇1∇3
− R0
∇1

 [ u1
R0

]
= −0.30

SI (u2) = ∂R0
∂u2

x u2
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂u2


[
u2
R0

]

=
[
∂
∂u2

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂u2

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂u2

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
u2
R0

]
=
[(β1

Q1
Q1+Q2

+σ
)
∇3+

(
β3

Q1
Q1+Q2

+σ
)

(θ+u2)
]
∇1∇2∇3−R0∇2∇12∇32

(∇1∇2∇3)2

 [ u2
R0

]

=
(β1

Q1
Q1+Q2

+σ
)
∇3+

(
β3

Q1
Q1+Q2

+σ
)

(θ+u2)

∇1∇2∇3
− R0
∇2

 [ u2
R0

]
= 0.07

SI (ε) = ∂R0
∂ε
x ε
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂ε


[
ε
R0

]

=
[
∂
∂ε

(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+ ∂
∂ε

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+ ∂
∂ε

(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
ε
R0

]
=
[
−φ

(
β1

Q1
Q1+Q2

+ σ
)

1
∇12 − φ

(
β2

Q1
Q1+Q2

+ σ
)

θ
∇12∇2

− φ
(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇12∇2∇3

)] [
ε
R0

]
= −φ
∇1

[(
β1

Q1
Q1+Q2

+ σ
)

1
∇1

+
(
β2

Q1
Q1+Q2

+ σ
)

θ
∇1∇2

+
(
β3

Q1
Q1+Q2

+ σ
) (

θu2+u1∇2
∇1∇2∇3

)] [
ε
R0

]
= −φ
∇1
R0 × ε

R0
= −φε
∇1

= −0.02

SI (µ) = ∂R0
∂µ
x µ
R0

=


∂

(
(β1

Q1
Q1+Q2

+σ)∇2∇3+(β2
Q1

Q1+Q2
+σ)θ∇3+(β3

Q1
Q1+Q2

+σ)(θu2+u1∇2)

∇1∇2∇3

)
∂µ


[
µ
R0

]

=
[(β1

Q1
Q1+Q2

+σ
)

[∇3+∇2]+
(
β2

Q1
Q1+Q2

+σ
)
θ+
(
β3

Q1
Q1+Q2

+σ
)
u1

]
∇1∇2∇3−R0∇1∇2∇3[ ∂∂µ (∇1∇2∇3)]

(∇1∇2∇3)2

 [ µ
R0

]

=
(β1

Q1
Q1+Q2

+σ
)

[∇3+∇2]+
(
β2

Q1
Q1+Q2

+σ
)
θ+
(
β3

Q1
Q1+Q2

+σ
)
u1

∇1∇2∇3
− R0
∇1∇2∇3

[∇2∇3 +∇1∇2 +∇1∇3]
 [ µ

R0

]
= −0.01

We summarized values of sensitivity index for the important parameters by the table below.
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Table 7.4: Sensitivity indices

Parameter Sensitivity Index

θ -0.62

φ 0.56

β1 0.41

u1 -0.30

β3 0.29

β2 0.22

k2 -0.20

k3 -0.18

δ3 -0.13

σ 0.08

δ1 -0.08

u2 0.07

k1 -0.03

p1 0.02

δ2 -0.02

ε -0.02

µ -0.01

p2 0.00

Q1 0.00

Q2 0.00

Table 7.4 contains positive and negative sensitivity indices. The parameters are ordered from

most sensitive to least. The most sensitive parameter is the transmission rate of unaware

infective humans to aware infective, θ and the least sensitive parameter is the recruitment into

sexually immature class, Q2. The indices having positive signs increase the value of R0 as

one increase them and those having negative signs decrease the value of R0, when they are

increased.

One of the most sensitive parameter is θ. Increasing (or decreasing) θ by 10%, decreases

(or increases) R0 by 6.16%. If the sensitivity index of β1 = 0.414 , increasing β1 by 10%,

increasing R0 by 4.14%. And also if we see the sensitivity index ofk2 = −0.201, increasing k2

by 10%, decreases R0 by 2.01%. We can similarly interpret the remaining parameter values.
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The effectiveness of varying each parameter can thus be determined. As regards HIV/AIDS

control, interventions must target the most sensitive parameters. For instance, interventions

that target HIV status awareness and person to person transmission of the disease are the most

effective in controlling the disease.

7.1.2 Numerical Simulations

The numerical analysis is obtained from the graphs of basic reproduction number with respect

to the parameters obtained and listed in table 7.4

Recruitment in to sexually mature and immature population.

Figure 7.1: Reproduction number versus recruitment in to sexually mature population.

From figure 7.1, we can observe that an increase in recruitment in to sexually mature popula-

tion, Q1, makes the reproduction number, R0 always below one. That is the disease not persists

for any value of parameter Q1.

Figure 7.2: Reproduction number versus Recruitment in to sexually immature population.

From figure 7.2, we can observe that an increase in recruitment in to sexually immature pop-

ulation, Q2, makes the reproduction number, R0 always above one. That is the disease always

122



persists for any value of parameter Q2 at constant reproduction numberR0.

Rate of transmission of the disease from unaware and aware infective classes

Figure 7.3: Reproduction number versus the rate of horizontal transmission of unaware infective

Figure 7.3: it is graphical representation of the basic reproduction number R0 versus rate of

horizontal transmission of the disease from unaware infective class β1 and keeping other pa-

rameters constant. This figure shows that an increase in the rate of horizontal transmission

of unaware infective, β1, makes an increase in the reproduction number, R0. If β1 > 0.73 the

reproduction number R0 > 1 that indicates the disease persists. When β1 < 0.73 the reproduc-

tion number R0 < 1 this indicates that the disease not persists.

Figure 7.4: Reproduction number versus the rate of horizontal transmission of aware infective

Figure 7.4: it is graphical representation of the basic reproduction number R0 versus rate of

horizontal transmission of the disease from aware infective class β2 and keeping other parame-

ters constant. This figure shows that an increase in the rate of horizontal transmission of aware
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infective, β2, makes an increase in the reproduction number, R0. If β2 > 0.55 the reproduction

number R0 > 1 that indicates the disease persists. When β2 < 0.55 the reproduction number

R0 < 1 this indicates that the disease not persists.

Rate of transmission of the disease from Pre-AIDS class and blood born transmis-

sion

Figure 7.5: Reproduction number versus The horizontal transmission rate of Pre-AIDS.

Figure 7.5: it is graphical representation of the basic reproduction number R0 versus rate of

horizontal transmission of the disease from Pre-AIDS class β3 and keeping other parameters

constant. This figure shows that an increase in the rate of horizontal transmission of Pre-AIDS,

makes an increase in the reproduction number. For β3 > 0.75 we can see the reproduction num-

ber R0 > 1 that indicates the disease persists. When β3 < 0.75 the reproduction number R0 < 1

and this indicates that the disease not persists.

Figure 7.6: Reproduction number versus Blood born transmission.

Figure 7.6: it is graphical representation of the basic reproduction number R0 versus rate of

blood born transmission σ and keeping other parameters constant. This figure shows that an

increase in the rate of blood born transmission between the parametric values 0 and 0.01 makes
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an increase in the reproduction number with R0 < 1 and this indicates that the disease not

persists. For σ > 0.01 we can see the reproduction number R0 > 1 that indicates the disease

persists.

Rate of progress of unaware infective to AIDS class and rate of progress of aware

infective to AIDS class

Figure 7.7: Reproduction number versus the rate of progress of unaware infective to AIDS.

Figure 7.7: it is graphical representation of the basic reproduction number R0 versus rate of

progress of unaware infective to AIDS, δ1 and keeping other parameters constant. This figure

shows that an increase in the rate of progress of unaware infective to AIDS, between the para-

metric values 0 and 0.10 makes a decrease in the reproduction number but the reproduction

number is greater than one that indicates the disease persists. If the parameter value of δ1

greater than 0.10, then the reproduction number decreases and becomes less than one where

the disease not persists.

Figure 7.8: Reproduction number versus the rate of progress of aware infective to AIDS.

Figure 7.8: shows that an increase in the rate of progress of aware infective to AIDS, δ2, the

reproduction number, R0 is less than one and has almost constant value. This indicates the
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disease not persists.

Rate of progress of Pre-AIDS to AIDS and rate of transmission of unaware infec-

tive to aware infective

Figure 7.9: Reproduction number versus the rate of progress of Pre-AIDS to AIDS.

Figure 7.9: it is graphical representation of the basic reproduction number R0 versus rate of

progress of Pre-AIDS to AIDS, δ3 and keeping other parameters constant. This figure shows

that an increase in the rate of progress of Pre-AIDS to AIDS between the parametric values 0

and 0.66 makes a decrease in the reproduction number but the reproduction number is greater

than one that indicates the disease persists with a decreasing rate. If the parameter value of δ3

greater than 0.66, then the reproduction number decreases and becomes less than one where

the disease not persists.

Figure 7.10: Reproduction number versus the rate of transmission of unaware infective to aware

infective.

Figure 7.10: it is graphical representation of the basic reproduction number R0 versus rate of

transmission of unaware infective to aware infective, θ and keeping other parameters constant.

This figure shows that the rate of transmission of unaware infective to aware infective between
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the parametric values 0 and 0.92 makes a decrease in the reproduction number but the repro-

duction number is greater than one that indicates the disease persists with a decreasing rate.

If the parameter value of θ greater than 0.92, then the reproduction number decreases and

becomes less than one where the disease not persists.

Rate of transmission of unaware and aware infective to seropositive class

Figure 7.11: Reproduction number versus the rate of transmission of unaware infective to

seropositive class.

Figure 7.11: it is graphical representation of the basic reproduction number R0 versus rate of

transmission of unaware infective to seropositive class, k1 and keeping other parameters con-

stant. This figure shows that an increase in the rate of transmission of unaware infective to

seropositive class between the parametric values 0 and 0.06 makes a decrease in the reproduc-

tion number, but the reproduction number is greater than one that indicates the disease persists

with a decreasing rate. If the parameter value of k1 greater than 0.06, then the reproduction

number decreases and becomes less than one where the disease dies out.

Figure 7.12: Reproduction number versus the rate of transmission of aware infective to seropos-

itive class.

Figure 7.12: it is graphical representation of the basic reproduction number R0 versus rate of
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transmission of aware infective to seropositive class, k2 and keeping other parameters constant.

This figure shows that an increase in the rate of transmission of aware infective to seropositive

class,k2, between the parametric values 0 and 0.02 makes a decrease in the reproduction num-

ber, R0, but the reproduction number is greater than one that indicates the disease persists

with a decreasing rate. If the parameter value of k2 greater than 0.02, then the reproduction

number is less than one and almost constant in value.

Rate of transmission of Pre-AIDS individuals to seropositive class and the rate of

unaware infective immigrants

Figure 7.13: Reproduction number versus the rate of transmission of Pre-AIDS to seropositive

class.

Figure 7.13:it is graphical representation of the basic reproduction number R0 versus rate of

transmission of Pre-AIDS to seropositive class, k3 and keeping other parameters constant. This

figure shows that an increase in the rate of transmission of Pre-AIDS to seropositive class be-

tween the parametric values 0 and 0.85 makes a decrease in the reproduction number but the

reproduction number is greater than one that indicates the disease persists with a decreasing

rate. If the parameter value of k3 greater than 0.85, then the reproduction number is less than

one and we can say the disease not persists.

Figure 7.14: Reproduction number versus the rate of unaware infective immigrants.
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Figure 7.14:shows that an increase in the rate of unaware infective immigrants,p1, between the

parametric values 0 and 0.44 makes an increase in the reproduction number R0 > 1 and tell us

the disease persists.

Rate of aware infective immigrants and rate of progress of unaware infective to

Pre-AIDS

Figure 7.15: Reproduction number versus the rate of aware infective immigrants.

Figure 7.15: it is graphical representation of the basic reproduction number R0 versus rate of

transmission of aware infective immigrants, p2 and keeping other parameters constant. This

figure shows an increase in the rate of aware infective immigrants between the parametric val-

ues 0 and 0.18 makes an increase in the reproduction number but the reproduction number is

less than one that indicates the disease not persists. If the rate of aware infective immigrants

between 0.18 and 1.29 makes an increase in the reproduction number with, R0 > 1 and tell us

the disease persists. Whereas, the rate of aware infective immigrants greater than 1.29, makes

an increase in the reproduction number with R0 < 1, and tell us the disease not persists.

Figure 7.16: Reproduction number versus rate of progress of unaware infective to Pre-AIDS.

Figure 7.16: it is graphical representation of the basic reproduction number R0 versus rate of

progress of unaware infective to Pre-AIDS, u1 and keeping other parameters constant. This

figure shows an increase in the rate of progress of unaware infective to Pre-AIDS between the
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parametric values 0 and 0.42 makes a decrease in the reproduction number but the reproduction

number is greater than one that indicates the disease persists with a decreasing rate. If the

parameter value of u1 greater than 0.42, then the reproduction number is less than one and we

can say the disease not persists.

Rate of progress of aware infective to Pre-AIDS and rate of vertical transmission

Figure 7.17: Reproduction number versus rate of progress of aware infective to Pre-AIDS.

From figure 7.17, we can observe that an increase in the rate of progress of aware infective to

Pre-AIDS, u2, the reproduction number, R0 is less than one and has almost constant value.

This indicates the disease not persists.

Figure 7.18: Reproduction number versus Rate of vertical transmission.

Figure 7.18: it is graphical representation of the basic reproduction number R0 versus rate

of vertical transmission, φ and keeping other parameters constant. This figure shows that an

increase in the rate of vertical transmission between the parametric values 0 and 0.41 makes

an increase in the reproduction number but the reproduction number is less than one that

indicates the disease not persists. Whereas, the rate of vertical transmission greater than 0.41,
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makes an increase in the reproduction number with R0 > 1, and tell us the disease persists.

The probability of death at birth and natural mortality

Figure 7.19: Reproduction number versus the probability of death at birth.

Figure 7.19: it is graphical representation of the basic reproduction number R0 versus probabil-

ity of death at birth, ε and keeping other parameters constant.From this figure we can observe

that an increase in the probability of death at birth, ε, the reproduction number, R0 is less

than one. This indicates the disease not persists.

Figure 7.20: Reproduction number versus Natural mortality.

Figure 7.20: it is graphical representation of the basic reproduction number R0 versus natural

mortality, µ and keeping other parameters constant. This figure shows an increase in natural

mortality between the parametric values 0 and 1.25 makes a decrease in the reproduction num-

ber but the reproduction number is greater than one that indicates the disease persists with a

decreasing rate. If the parameter value of µ greater than 1.25, then the reproduction number

is less than one and we can say the disease not persists.
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7.2 Conclusions

In this study we have developed a deterministic mathematical model for Age structure and In-

flow Immigrants on the Dynamics of HIV/AIDS: dividing susceptible individuals in to sexually

immature (i.e age below 15 years) and sexually mature (i.e age 15 years and above), aware

and unaware infective, infective immigrants, Pre-AIDS individuals and treatments of infectious

individuals. The stability analysis on the model shows that the disease -free equilibrium point

E0 is to be locally asymptotically stable and globally asymptotically stable when R0 < 1 and

the positive endemic equilibrium point E∗ is shown to be locally asymptotically stable and

globally asymptotically stable for Z < Y . Results from Numerical simulation show that as

the transmission rate of unaware infective humans to aware infective increases, the basic re-

production number decreases. This will result in decreasing on the transmission of HIV/AIDS.

We evaluated the numerical value of the basic reproduction number. Consequently, R0 = 1.05

that shows the HIV/AIDS disease spread in the community. A sensitivity analysis of the ba-

sic reproduction number indicates that the transmission rate of unaware infective humans to

aware infective, the rate of vertical transmission and horizontal transmission rate are the most

sensitive parameters that can be used to control the spread of the disease.
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Chapter 8

Results, Conclusions and

Recommendations

8.1 Results

In this study, we would like to present the results and findings obtained from the analysis of

the model discussed under chapter 7.

From sensitive analysis we observed that the most sensitive parameter is the transmission rate

of unaware infective humans to aware infective, θ and the least sensitive parameter is the re-

cruitment into sexually immature class, Q2. The indices having positive signs increase the value

of R0 as one increase them and those having negative signs decrease the value of R0, when they

are increased.

Results from Numerical simulation show that as the transmission rate of unaware infective

humans to aware infective, θ, increases, the basic reproduction number decreases. This will

result in decreasing on the transmission of HIV/AIDS.

An increase in the rate of horizontal transmission of unaware infective, β1, makes an increase

in the reproduction number, R0. If β1 > 0.73 the reproduction number R0 > 1 that indicates

the disease persists. When β1 < 0.73 the reproduction number R0 < 1 this indicates that the

disease not persists.

From figure 7.4 we can observe that an increase in the rate of horizontal transmission of aware

infective, β2, makes an increase in the reproduction number, R0. If β2 > 0.55 the reproduction
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number R0 > 1 that indicates the disease persists. When β2 < 0.55 the reproduction number

R0 < 1 this indicates that the disease not persists.

We can observe From figure 7.5, that an increase in the rate of horizontal transmission of Pre-

AIDS, β3, makes an increase in the reproduction number, R0. For β3 > 0.75 we can see the

reproduction number R0 > 1 that indicates the disease persists. When β3 < 0.75 the reproduc-

tion number R0 < 1 and this indicates that the disease not persists.

We can observe that an increase in the rate of progress of unaware infective to AIDS, δ1, between

the parametric values 0 and 0.10 makes a decrease in the reproduction number, R0, but the

reproduction number is greater than one that indicates the disease persists. If the parameter

value of δ1 greater than 0.10, then the reproduction number decreases and becomes less than

one where the disease not persists.

From figure 7.9, we can observe that an increase in the rate of progress of Pre-AIDS to AIDS,

δ3, between the parametric values 0 and 0.66 makes a decrease in the reproduction number,

R0, but the reproduction number is greater than one that indicates the disease persists with a

decreasing rate. If the parameter value of δ3 greater than 0.66, then the reproduction number

decreases and becomes less than one where the disease not persists.

An increase in the rate of transmission of unaware infective to aware infective, θ, between

the parametric values 0 and 0.92 makes a decrease in the reproduction number, R0, but the

reproduction number is greater than one that indicates the disease persists with a decreasing

rate. If the parameter value of θ greater than 0.92, then the reproduction number decreases

and becomes less than one where the disease not persists.

Figure 7.11 shows an increase in the rate of transmission of unaware infective to seropositive

class, k1, between the parametric values 0 and 0.06 makes a decrease in the reproduction num-

ber, R0, but the reproduction number is greater than one that indicates the disease persists

with a decreasing rate. If the parameter value of k1 greater than 0.06, then the reproduction

number decreases and becomes less than one where the disease not persists.

From figure 7.12 we can observe that an increase in the rate of transmission of aware infective

to seropositive class, k2, between the parametric values 0 and 0.02 makes a decrease in the

reproduction number, R0, but the reproduction number is greater than one that indicates the

disease persists with a decreasing rate. If the parameter value of k2 greater than 0.02, then the

reproduction number is less than one and almost constant in value.

An increase in the rate of transmission of Pre-AIDS to seropositive class, k3, between the para-

metric values 0 and 0.85 makes a decrease in the reproduction number, R0, but the reproduction

number is greater than one that indicates the disease persists with a decreasing rate. If the
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parameter value of k3 greater than 0.85, then the reproduction number is less than one and we

can say the disease not persists.

Figure 7.14 shows that an increase in the rate of unaware infective immigrants, p1, between the

parametric values 0 and 0.44 makes an increase in the reproduction number R0 > 1 and tell us

the disease persists.

From figure 7.15, we can see that an increase in the rate of aware infective immigrants, p2,

between the parametric values 0 and 0.18 makes an increase in the reproduction number, R0,

but the reproduction number is less than one that indicates the disease not persists. If the

rate of aware infective immigrants between 0.18 and 1.29 makes an increase in the reproduction

number with, R0 > 1 and tell us the disease persists. Whereas, the rate of aware infective

immigrants greater than 1.29, makes an increase in the reproduction number, R0 < 1, and tell

us the disease not persists.

An increase in the rate of progress of unaware infective to Pre-AIDS, u1, between the paramet-

ric values 0 and 0.42 makes a decrease in the reproduction number, R0, but the reproduction

number is greater than one that indicates the disease persists with a decreasing rate. If the

parameter value of u1 greater than 0.42, then the reproduction number is less than one and we

can say the disease not persists.

From figure 7.17, we can observe that an increase in the rate of progress of aware infective to

Pre-AIDS, u2, the reproduction number, R0 is less than one and has almost constant value.

This indicates the disease not persists.

Figure 7.18 shows an increase in the rate of vertical transmission, φ, between the parametric

values 0 and 0.41 makes an increase in the reproduction number, R0, but the reproduction

number is less than one that indicates the disease not persists. Whereas, the rate of vertical

transmission greater than 0.41, makes an increase in the reproduction number, R0 > 1, and

tell us the disease persists.

From figure 7.19, we can observe that an increase in the probability of death at birth, ε, the

reproduction number, R0 is less than one and has almost constant value. This indicates the

disease not persists.

An increase in natural mortality, µ, between the parametric values 0 and 1.25 makes a decrease

in the reproduction number, R0, but the reproduction number is greater than one that indicates

the disease persists with a decreasing rate. If the parameter value of µ greater than 1.25, then

the reproduction number is less than one and we can say the disease not persists.
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8.2 Conclusions

In this thesis, we studied a mathematical model analysis of the dynamics of HIV/AIDS with

different mode of transmission and inflow immigrants in Ethiopia. Persistence of current in-

fections and their possible dynamics are investigated. We also addressed the stability of the

epidemic, sensitivity analysis and numerical simulation.

In Chapters 1-3, we reviewed some basic features of the HIV epidemic, historical background,

and the different mathematical models investigated by different authors. And also highlights

the role of modeling and stated the method we used in the study.

In Chapter 4, we proposed an improvement of the model [104] that is to show the effect of un-

aware infective immigrants, aware infective immigrants, vertical and blood borne transmissions

and treatment on the dynamics of HIV/AIDS. A non-linear differential equation was formu-

lated to represent the model. The stability analysis on the model was investigated.

In Chapter 5, we extended the model given in chapter 4 and studied. Here we have developed

a deterministic mathematical model for Age structure and Inflow Immigrants on the Dynamics

of HIV/AIDS: dividing susceptible individuals in to sexually immature (i.e age below 15 years)

and sexually mature (i.e age 15 years and above), aware and unaware infective, infective immi-

grants, Pre-AIDS individuals and treatments of infectious individuals. The stability analysis

of the model also analyzed.

In Chapter 6, we investigated the model proposed in chapter 4 using parameter values obtained

from different journals. A sensitivity analysis of the basic reproduction number indicates that

transmission probability, the rate of progress to AIDS and the rate of aware infective immi-

grants are the most sensitive parameters that can be used to control the spread of the disease.

Results from numerical simulation show that as the probability of transmission of the disease

to susceptible individuals by unaware and aware infective individuals increases, the basic repro-

duction number also increases. This will result in increasing on the transmission of HIV/AIDS.

In Chapter 7, we analyzed the model given in chapter 5 using parameter values obtained from

data taken from Ethiopia and related materials. Results from numerical simulation show that

as the transmission rate of unaware infective humans to aware infective increases, the basic re-

production number decreases. This will result in decreasing on the transmission of HIV/AIDS.

We evaluated the numerical value of the basic reproduction number. Consequently, R0 = 1.05

that shows the HIV/AIDS disease spread in the community. A sensitivity analysis of the ba-

sic reproduction number indicates that the transmission rate of unaware infective humans to
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aware infective, the rate of vertical transmission and horizontal transmission rate are the most

sensitive parameters that can be used to control the spread of the disease.

As further studies and future directions, one may include additional realistic features in our

models. Some additional aspects include: age structure in infectious stages, sex structured,

investigate time dependency on transmission rate and other parameters of a model under a

continuous changes of control measures. Drug resistance is a critical issue in HIV infection,

thus by including drug resistance in our models one can improve modeling outcomes signifi-

cantly.

8.3 Recommendations

Based on the above results and discussion we observed the basic reproduction number R0 = 1.05

is greater than one and this implies that the disease spreads in the community. In order to

decrease the spread of HIV/AIDS in the society, we recommend the following based on the

most influential parameters.

The first control parameter is the rate of transmission of unaware infective to aware infective θ.

θ = number of unaware infected who know their status per year
total number of unaware infective = 0.79, where number of population moving

from unaware infected to aware infected class is 64,104 and total number of unaware infective

is 81,144. The intersection point of R0 = 1 and the rate of transmission of unaware infective

to aware infective class θ is (θ, R0) = (0.92, 1). Therefore, for basic reproduction to be less

than unity, the control parameter θ should be greater than 0.92. But from the real data we

obtained that θ = 64,104
81,144 = 0.79. Hence, this value should approach 0.92 by fixing the total

number of unaware infected population 81,144 and increase the number of population moving

from unaware infected to aware infected class from 64,104 to 74,652.

The second control parameter is the rate of vertical transmission φ.

φ = Average number of infected new born per year
Total number of new born = 0.45, where average number of infected new born per

year is 148,709 and total number of new born is 330,465. The intersection point of R0 = 1 and

the rate of vertical transmission φ is (φ,R0) = (0.41, 1). Therefore, for basic reproduction to

be less than unity, the control parameter φ should be less than 0.41. But from the real data we

obtained that φ = 148,709
330,465 = 0.45. Hence, this value should approach 0.41 by decreasing infected
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new born as much as possible.

The third control parameter is the horizontal transmission rate of unaware infective to suscepti-

ble individuals β1. β1 = Effective contact of unaware infective
Total contact of unaware infective = 0.83, where effective contact of unaware

infective is 67,350 and total contact of unaware infective is 81,144. The intersection point of

R0 = 1 and the horizontal transmission rate of unaware infective to susceptible individuals β1

is (β1, R0) = (0.73, 1). Therefore, for basic reproduction to be less than unity, the control pa-

rameter β1 should be less than 0.73. But from the real data we obtained thatβ1 = 67,350
81,144 = 0.83.

Hence, this value should approach 0.73 by fixing the total contact of unaware infective 81,144

and decrease effective contact of unaware infective from 67,350 to 59,235.

The fourth control parameter is the rate of progress of unaware infective to Pre-AIDS u1.

u1 = 1
Average life time of unaware infective individual progress to Pre-AIDS = 0.36, where average life time of

unaware infective individual progress to Pre-AIDS is 2.78. The intersection point of R0 = 1

and the rate of progress of unaware infective to Pre-AIDS u1 is (u1, R0) = (0.42, 1). Therefore,

for basic reproduction to be less than unity, the control parameter u1 should be greater than

0.42. But from the real data we obtained that u1 = 1
2.78 = 0.36. Hence, this value should

approach 0.42 by decreasing average life time of unaware infective individual progress to Pre-

AIDS from 2.78 to 2.38.

The fifth control parameter is the horizontal transmission rate of Pre-AIDS to susceptible

individuals β3. β3 = Effective contact of Pre-AIDS
Total contact of Pre-AIDS individuals = 0.9, where effective contact of Pre-AIDS is

27,265 and total contact of Pre-AIDS individuals is 30,294. The intersection point of R0 = 1 and

the horizontal transmission rate of Pre-AIDS to susceptible individuals β3 is (β3, R0) = (0.75, 1).

Therefore, for basic reproduction to be less than unity, the control parameter β3 should be less

than 0.75. But from the real data we obtained that β3 = 27,265
30,294 = 0.9. Hence, this value should

approach 0.75 by fixing the total contact of Pre-AIDS individuals 30,294 and decrease effective

contact of Pre-AIDS individuals from 27,265 to 22,721.
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